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SUMMARY

The concentration of stress around the opening occurs in the excavation of an opening in the rock massif. The
paper discusses the changes of stress and strains in close surrounding of the elliptical opening as well as the impact
of the opening on the environment. The theoretical solution is used to define dimensions of the area where the
opening causes changes in the stress condition related to the primary condition within acceptable boundaries. The
comparison of the results from numerical estimates is presented according to the finite elements method with results
according to the theory of elagticity. Numerical estimates were performed for the cases of assuming edge conditions:
forces and displacements. The assumption of the boundary condition with displacements gives better approximation
of the conditions of stresses and strains.

The concentration of stress around the opening and the occurrence of the plastification zone is discussed on the
case of the road tunnell excavation. The estimation is carried out according to the finite elements method using the
Hoek-Brown failure criterion which is implemented into the program. The results from the stability analysis point
to the area where we can expect the rock material failure, respectively the places in which the safety measures
should be provided. The zones of plastification extension are graphically presented. Especially important is the

comparison of the numerical modelling results with observations on the site during excavation.

Key words: underground room, plastic yielding, finite element method.

1. INTRODUCTION

When considering underground room planning,
one of significant factorsisthe concentration of stress
around the openings of underground rooms. Opening
the whole profile of an underground room leads to a
change of stress condition in close surroundings of the
opening. By opening the excavation, the primary stress
condition in the massif turns into the secondary
condition of stress and strain depending on the rate of
the progress in the exavation and supporting and on
other circumstances in the area of the excavation face.
The concentration of normal stresses on the opening
edge takes place thereby while the shear and radia
stresses disappear [1]. The impact of the opening
disappears completely at some distance, so the massif
outside the impact zone isin primary stress condition.

The part of the rock directly extracted cannot
possibly be supported simultaneously. The stress
condition and the deformation condition for such

unsupported sections are estimated for the plane
condition of deformationswhich isin accordance with
the stress condition at some distance from the face
itself.

The support systems' planning methods depend on
local circumstances, massif properties and applied
procedures of excavation and supporting. By real
condition modelling, the behaviour of underground
room during exavation can be foreseen. The formation
of natural materials as rock and soil, in complex
geologic processes is conditioned by avery wide range
of physical-mechanical parameters (e.g. uniaxial
compressive strength, modulus of deformation, angle of
friction, cohesion and others) and spatial heterogeneity.

The stability and safety of an opening depend also
on the mechanical properties of rock or soil; therefore,
for the description of elastic, plastic and viscous
properties of a massif it is necessary to know a great
number of material characteristics. Asthe characteristics
cannot usually be proved until certain location isfound
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by excavation and as they are vaid only for a limited
area, they are assumed on the basis of experience,
whereby it is necesary to adopt possible values.

Since al the complexity of the problem cannot
possibly be comprised it is necessary to apply some
simplifications.

The criteria for defining safety can be based on
displacements and relative deformations, stressesin the
rock massif or soil, primary support and lining and the
degree of plastic behaviour and bearing capacity in the
sense of the ultimate state theory. The safety factors
for each of the mentioned cases can be different.

2. THEORETICAL ANALYS S OF PLANE
STRAIN STATE CONDITION

The stress estimate for plane condition of
deformations according to the theory of elasticity gives
the first information about the occurrence near the
opening. The theoretical solution is used to define
dimensions of the area where the opening causes
changes in the stress condition related to the primary
condition within acceptable limits in the application
of numerical methods: the method of finite differences,
the method of finite elements or the method of
boundary elements.

The underground room at certain depth can be
observed as an opening in an infinite plate (Figure 1).
The Poeschl solution [2] for eliptical opening will be
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Fig. 1 Underground opening

The stress function F expressed by curvilinear
coordinates x and h can be written as:
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satisfying Maxwell’s differential equation:
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The stress components are the function of the stress
function F:
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a’- b’
hy? =h,? :T>(ch 2x-cosh)  (10)

Alongside the éliptical opening the circular stress
is given by expression:

s = sh2xg - cos2a x> +0032(h- a)
hh ch 2% - cos 2h

For the estimate of the secondary stress condition a
program has been developed which computes the
stresses in individual points on the basis of input data.
The calculation is performed for the ratio of elipse
half-axis bla=1/2, 2/3 and 3/2 and for a different ratio
of the horizonta and vertical loadp,/p,=0, 0.5and 1.0.

The analytical solution according to the theory of
elasticity is used to define the necessary comprising
areain the analysis of stress and strain using the finite
element method [3].

Xp (11)

3. NUMERICAL ANALYSISOF STRESS
AROUND THE OPENING

More complex problems of the continuum
mechanics e.g. irregular geometry of the opening
cannot be solved by a mathematical formulation. It is
not possible to obtain the solution in a closed form.

By numerical estimation methods we obtain
approximate solutions, that is solutions of different
approaches towards the solution of the problem with
unlimited area[4, 5]. Using the finite e ement method,
the most common engineering approach is the
limitation or shortening of the areawhere thefinite part
is singled out from the observed infinite areain such a
way that finite edges with appropriate boundary
conditions are positioned far enough from the area of
interest [6, 7]. In such an approach, there is a basic
problem i.e. how far from the opening edge the outer
boundaries should be set to get a satisfying solution
[8, 9]. The boundaries are mostly set arbitrary, based
on the experince or intuition [10].

Therefore the estimation is performed for different
relations of semi-axes of the élipse b/a and the load
pn/py- The cutting points of confocal ellipses
x=constant and of confocal hyperbolash=constant are
chosen as nodal points defining the elements. The
network of quadry-lateral elementsisadopted. Element
dimensions are increasing constantly towards the outer

4 Jch2x- cos2h

seo [1- chz(x- xo)]>6in 2(h - a)

edge. This does not cause a slighter approximation
since on the outer contour edge the stress condition
approximates the homogeneous one with smaller
gradients of deformations and stresses. The outer
contour isassumed in the elipse form which is confocal
with opening and very approximately corresponds to
the circle. The symmetry of displacement and load is
provided with vertically and horizontally movable
supports in the axis of symmetry. The boundary
conditions on the outer contour are assigned in two
ways. by assigning the load - forces in the contour
points (case 1) and by assigning the displacement in
the contour points (case 2). For boundary conditions
assumed with diplacements (case 2) it is necessary to
assume in each contour point two boundary elements.
The vertical and horizontal forces for the points of the
outer contour are determined by the trapezoid rule:

I:3/.0 :%(pvn—l +2pv,n)+ Dyn (va,n + pv,n+1) (12)
Ph,n = D Zn-1 (ph,n—l + th,n)"' b Zn (zph,n + ph,n+1) (13)

6 6

Displacements of contour points are obtained by
integration of deformations' components:

1-n2 .
_ME_n)ygg_ 2% g

V= Cpyydy =
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W—Gzde—' = >‘<e; - kxﬁgz (15)

The network of quadry-lateral elements is adopted
for the elliptical opening with relation of semi-axis
b/a=1/2. Distribution of stresses along the axes y and
zfor load ratio k=0.0is presented in Table 1; k=0.5in
Table2 and k=1.0in Table 3.

Table 1 Valuesof stresses sy and s, along the axes y and z

b/a=1/2 py=1.0 and py,=0.0
yl/a Sz Sy z/a Sz Sy
1.00 5.000 0.000 0.50 0.000 -1.000
141 1.505 0.553 1.18 0.209 -0.047
2.00 1.170 0.266 1.80 0.549 0.056
2.83 1.072 0.129 2.69 0.762 0.045
4.00 1.033 0.063 3.91 0.877 0.027
5.66 1.016 0.031 5.59 0.938 0.014
8.00 1.007 0.015 7.95 0.968 0.007
11.31 1.003 0.007 11.28 0.984 0.003
16.00 1001 0.003 15.98 0.992 0.001
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Table 2 Values of stresses sy and s, along the axes y and z

b/a=1/2 p/py=05

y/a Sz Sy Zla Sz Sy
1.00 4.500 0.000 0.50 0.000 | 0.000
141 1.511 0.782 1.18 0.302 0.569
2.00 1.182 0.645 1.80 0.612 0.591
2.83 1.079 0.571 2.69 0.794 | 0.558
4.00 1.037 0.535 391 0.896 | 0.532
5.66 1.018 0.517 5.59 0.947 0.516
8.00 1.008 0.508 7.95 0.973 | 0.508
11.31 1.004 0504 | 11.28 0.986 | 0.504
16.00 1.002 0.502 15.98 0.993 | 0.502
Table 3 Values of stresses sy and s, along the axes y and z

bla=1/2 pupy=1.0

y/a S, Sy Zla S, Sy
1.00 4.000 0.000 0.50 0.000 1.000
141 1.517 1.011 1.18 0.395 1.185
2.00 1.194 1.024 1.80 0.676 1.126
2.83 1.086 1.014 2.69 0.832 1.070
4.00 1.041 1.007 391 0.915 1.037
5.66 1.020 1.003 5.59 0.957 1.019
8.00 1.009 1.001 7.95 0.978 1.009
11.31 1.004 1.000 11.28 0.989 1.004
16.00 1.002 1.000 15.98 0.995 1.002

The obtained values of stresses along the axis are
compared with the values of the primary stresses state
for the ratio of horizontal and vertical loads p,,/p,~0.5
for the discussed opening. The differences of stress
conditions for the case of opening related to primary
stress state, expressed in percentages are presented in
Table4. It isobvious, that stress differences along the
axisy are aimost twice smaller than aong the axis z

Table 4 Differencesin stressesrelated to primary stress
along y and z axis

DEH 10.0 5.0 2.5 0.5
y/a 2.6 3.5 5.3 10.7
zlb 4.0 5.6 7.8 19.5

Similar results are also obtained for other relations
of the axis b/a=2/3 - 3/2 and load ratio py/p,=0, 0.5
and 1.0. Therefore, asixfold value of the greater semi-
axis is suggested for the dimension of the comprised
area. The adoption of a larger area would require a
considerably larger number of nodal points and
elements and a larger extension of the numerical
estimation, whereby a greater accuracy in satisfying
boundary conditions would not at the same time
increase the accuracy of the numerical solution. This
would not have any sense for the mathematical
modelling of underground rooms, since greater
mistakes in planning underground rooms are possible
in the estimation of physical-mechanical characteristics
of the massif.

For the elliptical opening with a semi-axis
relation b/a=2/3, since it is approximately the ultimate
case occurring in underground room construction, with
p,=1.0, stresses s, and s , are compared in midpoints
of the elements side aong the axis y (Table 5), in
midpoints of the elements side along the axis z (Table
6) and in centroids of elements along the opening
(Table 7) for both ways of assuming boundary
conditions: forces (Case 1) and displacements (Case 2).

Stress differences between theoretical and
numerical solutions are presented in percentages of the
basic vertical load p,=1. The mean values of stress
differences D,yerage @€ presented in tables. The
biggest deviations occur in the places of the greatest
stress concentrations in assuming boundary conditions
by forces. Assuming boundary conditions by
displacements gives more accurate stresses both near
the opening and on the outer contour.

Especially interesting is the comparison of the
displacements of nodal points v and w of the outer
contour. Considerable deviations from the theoretical
solution are obtained in the case of assuming boundary
conditions with forces (Case 1) in the outer contour
points. The errors in displacements on the outer
contour in assuming boundary conditions by forces
amount to 11% theoretical value. Case 2 reproduces
displacements which are assumed as boundary
conditons in advance.

Table 5 Comparison of stresses s, and s, along the axisy in midpoints of the elements’ sides

Sresss y SressS;
El. Theory of Casel |D(%)| Case2 |D (%) Theory of Casel |D(%)| Case2 |D(%)
elasticity elasticity
l. 0.498 0.397 10.1 0.354 144 2.462 2.726 26.4 2.400 6.2
1. 0.501 0.571 7.0 0.463 3.8 1.550 1.945 39.5 1.443 10.7
I1. 0.352 0.348 04 0.332 2.0 1.258 1317 5.9 1177 8.1
V. 0.233 0.214 1.9 0.221 12 1.136 1.1881 4.5 1.066 7.0
V. 0.150 0.124 2.6 0.146 04 1.077 1.109 32 1.016 6.1
V1. 0.096 0.067 29 0.098 0.2 1.045 1.060 15 0.995 5.0
VII. 0.062 0.028 34 0.066 04 1.027 1.013 14 0.998 3.9
VI 0.039 0.003 3.6 0.047 0.5 1.017 0.959 5.8 0.996 2.1
Daver age 4.0 Daver age 2.9 Daver age 11.0 Daver age 6.1
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Table 6 Comparison of stresses s, and s, along the axis z in midpoints of the elements’ sides

Sresssy Sress S;
El. Theory of Casel |D(%)| Case2 |[D(%) Theory of Casel |D(%)| Case2 |[D(%)
eladticity elagticity
l. - 0483 -0598 | 115 -0452 31 - 0.023 0.035 5.8 0.036 5.9
1. - 0.075 -0.153 7.8 -0.088 1.3 0.171 0.221 5.0 0.208 3.7
1. 0.033 - 0.028 6.1 0.011 22 0.408 0.467 59 0.421 13
V. 0.052 0.007 4.5 0.032 2.0 0.598 0.659 6.1 0.588 10
V. 0.045 0.016 2.9 0.024 2.1 0.733 0.801 6.8 0.710 2.3
VI 0.034 0.024 10 0.009 25 0.826 0.897 71 0.793 3.3
VIL 0.023 0.042 19 -0010 | 33 0.887 0.962 75 0.849 3.8
VIII. 0.015 0.080 6.5 -0.034 4.7 0.927 1.006 7.9 0.887 4.0
Daverage 53 Daverage Daverage 6.5 Daverage 3.2
Table 7 Comparison of stresses s, and s, in centroids of elements along the opening
StressSy SressS:
El. Theory of Casel |[D(%)| Case2 |D(%) Theory of Casel |D(%)| Case2 |[D(%)
elasticity elasticity
L 0.494 0.445 49 0.396 9.8 2445 2747 30.2 2416 29
. 0.354 0.324 3.0 0.292 6.2 2.243 2.459 21.6 2.167 7.6
M. 0.155 0.166 11 0.158 0.3 1.872 1.991 11.9 1.762 11.0
V. -0.024 0.004 2.8 0.022 4.6 1.399 1.438 3.9 1.285 114
V. -0.161 -0.142 19 - 0.098 6.3 0.922 0.907 15 0.823 9.9
VI. -0.261 -0.270 0.9 -0.199 6.2 0515 0.487 2.8 0.452 6.3
VL. - 0.348 - 0.405 5.7 - 0.301 4.7 0.221 0.214 0.7 0.205 1.6
VIII. - 0.429 -0531 | 102 | -0.399 3.0 0.053 0.074 21 0.075 22
IX. -0.483 -0607 | 124 | -0.460 2.3 -0.015 0.020 3.5 0.024 3.9
Daverage 4.8 Daverage 4.8 Daverage 8.7 Daverage 6.3

4. FAILURE CRITERION

In order to analyse the underground room stability
in the excavation it is necessary to define the failure
criterion i.e. the stress condition where deformations
become unlimited. For cohesive and non-cohesive soils
Mohr-Coulomb’s failure criterion is suitable (Figure
2), which is expressed by intensities of the main
stresses:

S1*S3 S1°S3,4y

=C 0S|
> > i @1e
where;
s, ands 3- principal stresses [kN/mA]
c - cohesion [kKN/m?]
i - friction angle [°].
T o=a,
;GI
ﬂ.‘
d=0,
T 1,--
)
28 | a
c!l a o o

Fig. 2 Mohr-Coulomb failure criterion

The Hoek-Brown failure criterion isformed in rock
mechanics for the rock massif [11, 12]:

S1=S3+ M5 S+ 2
where;

s, - critical compressive stress [ kN/n¥]

S5 - minimum compressive stress [ kN/n¥]

m - Hoek-Brown coefficient

S - Hoek-Brown coefficient

S, - uniaxial compressive rock strength [kN/m?].

(17)

L
0 I

Fig. 3 Hoek-Brown failure criterion
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The application of this criterion enables perceiving
of the area in which tensile failure or dliding occurs.
The relation between the critical stress and the
estimation stress represents an apparent safety
coefficient. To prove the existence or non-existence of
the plastic deformation it is necessary to compare the
degree of the effective stress of the observed point with
the equivalent stress of relaxation. The occurrence and
the way of development of plastification zone around
the opening was performed by the finite element
method. For this purpose, the Hoek-Brown material
failure criterion was implemented in the programme
of finite elements with elastic model of material
behaviour, since it suits best the rock behaviour in the
case of tunnel excavation.

As an example we take estimates of the conditions
of stressand strain in the excavation of the road tunnel
by opening the whole profile [13]. The choice of the
needed number, the forms and dimensions of elements
are based on preliminary comparisons. The networks
of finite elements were generated and the serendipity
elements were used. Regarding the vertical symmetry
axis, only one half of the profile was observed,
whereby the assmption was simplified. The size of the
observed areawas adopted as sixfold value of the lager
dimension of the opening. The stress condition on the
outer contour, which is a circle, can be considered
approximately homogeneous. Towards the outer
contour a constant step of dimension elements’ increase
is adopted due to smaller and smaller gradients of
deformation and stress. By vertically movable
displaceable supports in the symmetry axis, the
displacement symmetry was also realized. Astheload,
the upper-bed weight of the massif was taken, i.e. the
massif pressure corresponding to primary stress states:

py =1 Xgxz (18)

Pr =kxpy (19)
The action of gravity loading of elements is
modelled by the concept of initial stresses in Gauss
points without subsidence occurrence, which is the
only one acceptable in the analysis of rock and soil
mechanics. Graphic representations of the computation
results are given for the rock of the third category of
tunnel excavation. An overburden height of 150 mis
assumed. The following values of the rock massif are
adopted in the estimate:

Uniaxial strength s .= 20- 50 MN/n?

Hoek-Brown coefficient m=1.0-35
Hoek-Brown coefficient s=0.01-0.1
Density r =25tm3
Young's modulus E = 10,000 MN/m2
Poisson’s ratio n=0.25

Ratio of horizonta and

vertical pressure K= p,/p,= 0.75

Figure 4 illustrates the plastic zones for the case
m=3.5, s=0.1and s ;=25 MN/n?.
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Fig. 4 Plastic zones for the case m=3.5; s=0.1
and s =25 MN/m2

The Gauss points plastified according to Hoek-
Brown'’s criterion of failure were determined with the
“PLAST” programme. The estimation results filed by
a special Fortran programme are converted into the
script record convenient for drawing in AUTOCAD.
The Gauss' points with plastification occurrence are
marked with acircle.

The influence of separate input parameters is
analyzed, and that is why the changes of Hoek-
Brown's coefficient m are presented on Figure 5 and
the change of coefficient sin Figure 6. By reason of
symmetry the plastification zones are marked only for
one half of the tunnels’ cross-section.

Fig. 5 Plastic zones obtained by variation of failure
coefficient m for the cases s=0.1 and s =25 MN/m2

Fig. 6 Plastic zones obtained by variation of failure
coefficient s for the cases m=3.5 and s =25 MN/m2
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Plastification zones for different values of uniaxial
strength s . with rock massif coefficient m=3 ands=0.1
are presented in Figure 7.

Fig. 7 Plastic zones obtained by uniaxial strength variation
for the case m=3 and s=0.1

The massif in the flowing state is presented by a
boundary line, which is in the final presentation in
ACAD rounded with option “fit line’. Contour lines
in Figure 8 for the case m=3.5 and s=0.1 are presented
with different values of a uniaxial strength s.. Each
line represents in fact a certain safety coefficient
according to Hoeck-Brown failure criterion. The size
of the plastic zones does not depend only on Hoek-
Brown's coefficients and uniaxia strength but it also
depends on the ratio of horizontal and vertical initial
pressures.

Although these results are more qualitative than
quantitative they point to the form of plastic zones
which also has a practical meaning. In supporting with
anchors, the anchorages should not be located in plastic
zones because thereby the bearing capacity of the
anchors would be questionable. With supporting we
also strengthen the rock wherewith we improve the
physical and mechanical properties of the rock and in
this way prevent further plastic deformations.

5. CONCLUSON

The conditions of stress and strains around the
opening are analyzed according to the finite element
method. According to the results from the theory of
eadticity the six-fold value of the greater semi-axisis
suggested as an optimal value of the comprised area.
The comparison of the results obtained from numerical
estimations with the theoretical solution indicates that,
assuming the boundary condition with displacements
(Case 2), gives a better approximation of stresses and
strains than assuming the boundary conditions with
forces(Case 1).

For the estimation of the states of stresses and
strains around the tunnel profile opening the Hoek-
Brown failure criterion was adopted. By
implementation of the Hoek-Brown failure criterion
into the program of finite elements for the elastic

continuum, the stability analysis of the opening
stability in the tunnel excavation was improved. The
opening stability was estimated by the variation of
physical-mechanical massif characteristics. The places
of the occurrence and the way in which the zones of
plastification extend are graphicaly presented. For
determining the mechanical characteristics of the rock/
soil possible deviations from the average values have
to be considered. The estimate assumptions have to be
checked by in-situ measurements on a tunnel pilot
section and used to improve the computation model.

B50 MN/m? 25 MN/m?2
5 MN/m? 2<> MN/m?

Fig. 8 Plagtic zones represented by contour lines for the case
n=3.5, s=0.1 and various values of uniaxial strength s
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NUMERIEKO MODELIRANJE PLASTIENOG POPUSTANJA STIJENSKOG MASIVA

SAZETAK

U radu su prikazane promjene naprezanja i deformacija u neposrednoj okolini otvora podzemne prostorije.
Iskopom podzemne prostorije u stijenskom masivu dolazi do koncentracije naprezanja uz otvor. Teorijsko rjeSenje
za eliptiéni otvor koristeno je za odredivanje velieine podruéja u kojem postojanje otvora izaziva promjene u stanju
naprezanja u odnosu na primarno stanje unutar prihvatljivih granica. U tu je svrhu napravljen program kojim se
proraéunava sekundarno stanje naprezanja. Dana je usporedba rezultata numeriéih proraéuna po metodi konaénih
elemenata s rezultatima po teoriji elastienosti. Numerieki proracuni provedeni uz zadavanje rubnih uvjeta: silama
(slueaj 1) i pomacima (sluéaj 2) te je konstatirano da zadavanje rubnih uvjeta pomacima daje bolju aproksimaciju
stanja naprezanja i deformacija. Koncentracija naprezanja uz otvor i pojava zona plastifikacija obradena je na
primjeru iskopa cestovnog tunela. Proraéun je proveden po metodi konaenih elemenata programom u koji je
implementiran Hoek-Brownov kriterij loma koji dobro opisuju ponaSanje stijena u sluéaju iskopa. Rezultati analize
stabilnosti ukazuju na podruéja u kojima moZemo oéekivati slom stijenskog materijala odnosno mjesta na kojima
treba poduzeti mjere osiguranja. Usporedba rezultata numeriekih modeliranja i samih opaZzanja na terenu prilikom
iskopa od posebnog je znaeaja.

Kljuene rijeei: podzemna prostorija, plastiéno popustanje, metoda konaénih elemenata.
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