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SUMMARY

This paper presents a method for obtaining bearing capacity spectra through the analysis of the stability of
column steel structure elements by means of a material and geometrically nonlinear model. Diagram spectra are
shown non-dimensionally for each group of sections, and they present the dependence of slenderness and failure
load on the given eccentricity. The analysis results are compared to prevalent steel structure stability standards and
they show minimal deviations. No special engineer training or knowledge is demanded for diagrams what makes
them applicable in engineering practice. In relation to standard computations, the usage of diagrams obtained by
considering material and geometrical nonlinearity enables more rational material and structure exploitation.
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1. INTRODUCTION

The computation of the stability and bearing capacity
of truss and frame steel structures whose elements are
most often exposed to centric and eccentric compressive
loads, almost always implies the influence of material
and geometrical nonlinearity. Although there are
rigorous numerical models for the analysis of such
structures today [1-5], their everyday usage is mostly
nonrational due to the high cost of training experts to
master those models and to the relatively low price of
standard steel linear structures.

Therefore the authors suggest the usage of
nondimensional spectra of bearing capacity diagrams
for determing the bearing capacity of linear element
structures exposed to both centric and eccentric
pressure from the stability aspect. Diagram spectra of
the bearing capacity and stability cover the field of both
the centric and eccentric pressure with lower and
higher eccentricity as well as the field of slenderness
according to the standard technical regulations. They
are developed by numerical tests performed of simple
examples of columns with different forms of the
profiles. They result from the highly precise numerical
analysis of the stability and bearing capacity of the
characteristic column and are based on the numerical
model of the material and geometrical nonlinearity
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according to the theory of small displacements. The
diagrams are defined by non-dimensional rates and are
widely applicable in the engineering practice.

2. NONLINEAR NUMERICAL MODEL

The model can be successfully applied for solving
problems in the field of plane truss and frame
structures. Since the stability problem cannot be solved
by analytical computation, some other methods are
applied in the model which give sufficiently precise or
approximate solutions. The solution implies the
determination of the failure load which leads to the loss
of stability and failure of the structure.

In nonlinear equations the stiffness matrix consists
of the stiffness matrix obtained by the linear theory of
small displacements Ko, the so-called basic stiffness
matrix and the stiffness matrix according to the
nonlinear theory of small displacements Kg, the so-
called geometrical stiffness matrix.

The equation of a nonlinear system can be
presented in the following way:

( ) )u()u( FuKK go =⋅+ (1)
Hereby we obtain a system of nonlinear equations

soluble by approximate numerical methods, which
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formulated by the finite element method, provides
good solution convergence.

The analyzed column-beam structure is discretized
by 1D finite elements (Figure 1). Each finite element
is joined to its local co-ordinate system, whereas the
whole structure can be examined in the global co-
ordinate system.

[ ] (u)-(u)+= ee Fukks e
g

e
o (2)

where ko
e is the basic stiffness matrix, kg

e is the
geometrical stiffness rigidity and Fe is the vector of
the wedging force.

By transforming the local co-ordinate system into
the global one we set conditions of compatibility of
node displacements. This conditon keeps node forces
in balance which is also the balance of the global
system:

[ ] (u)(u)+ FuKK go = (3)

where the global matrices of basic and geometrical
stiffness and load vector are:
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2.2 Modelling of the material nonlinearity

Material nonlinearity exerts its influence on the
assumption that:

− a theory of small deformations is applied;
− nonlinear relation between stresses and

strains;
− a layered cross-section model is used.
Compared to the linear elastic theory nonlinearity

significantly affects the behaviour of engineering
structures. This model is based on the efficient
simulation of the constant nonlinearity as well as on
the height of the section.

A layered cross-section model is used for the
simulation (Figure 3).

Fig. 1  Forces and displacements of a finite element (FE)

The approximate solution on one-dimensional
linear finite element is constructed by shape base H
functions chosen as Hermit’s polynomials of the first
and third order. By combining these functions we get
combined or global base functions which can be used
to present shear and flexural displacements.

2.1 Modelling of the geometrical nonlinearity

The influence of the geometrical nonlinearity is
simulated by achieving a balance of a strained structure
on the deformed position (Figure 2). The equations we
use differ from those used in the initial geometry and
they are nonlinear.

Total Lagrange’s formulation is used.
Geometrical nonlinearity exerts its influence on the

assumption that:
− a theory of small displacements is applied;
− the members are prismatic in parts with a

constant section and ideally straight;
− elements are deformed axially, flexurally and

by shear;
− equilibrium is established on the deformed

system;
− gravity type of loading.
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Fig. 3  A model of cross-section yielding

The cross-section is discretized by thin layers
defined by the thickness, width and sort of a material
(if there are two or more). The behaviour of the whole
layer is determined by the behaviour of the middle
point of the layer in which uni-axial strain is examined.

The material is described by the σ-ε diagram which
is given by the finite number of discrete points. The
steel model Fe 360 is illustrated in Figure 4.
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Fig. 4  Idealized σ−ε diagram for steel Fe 360
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Fig. 2  Displacements of elements' cross-sections

If we choose displacements from the group of H
functions, which give a close solution, then from the
equation of external and internal forces it follows:
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The Navier hypothesis is valid so that deformations
can be described by u and φ parameters.

Figures 3 b) to e) illustrate the development of the
cross-section yielding due to the bending moment and
compressive axial force.

Figure 3 f) represents the idealized elasto-plastic
σ-ε diagram.

Section yielding F(N,M)=1 is conditioned by the
natural diagram of the cross-section bearing capacity
which can be determined by the numerical method for
the appertaining cross-section per layered model.

The balancing of the cross-section for the given
cross-section combinations N and M is carried out
iteratively and it is used for testing the stage of the
cross-section deformation (linear, nonlinear, yielding
stage, or failure) [6].

With nonlinear examples we use the direct iterative
method for solving the nonlinear problems.

A thick net of FE is required for the adequate
stimulation of constant material nonlinearity and
yielding along the structure elements. One possibility
is to divide finite elements into the equal number R of
sub-elements (sub-element = SE).

For each SE, flexural and axial stiffnesses (EI, EA)
are accepted as constants for the given load increment
and iterative step of balancing the structure. The
stiffness is determined in the referential cross-section,
i.e., in the intergration point whose position is
measured from the beginning of FE for the considered
sub-element, given by the expression:

1R
)1r(lx

−
−= (5)

where l is the length of the finite element, r is the
number of the given sub-element, and R is the total
number of SE on FE. In this way the initial and finite
cross-sections FE are always included [6].

This numerical method is very accuracy sensitive,
so it is recommendable to adopt 10<R<30.

It is necessary for the discretization method to
assure sufficient accuracy since each structure
discretization on FE leads to certain errors of the
numerical method.

2.3 Incremental iterative algorithm

The loss of the stability, i.e., bearing capacity of
the structure is expressed by the critical parameter fk.
To determine the critical parameter fk  we apply
incremental iterative methods whose basic principle
is incremental loading along the sections, i.e.
increments. Sufficiently dense increments provide the
solution which will most likely correspond to the
physical state.

The algorithm is as follows:

− for m - increment step in loading (Fm=fmP0 where
P0 is starting load)

− n - iterative step in balancing:
1. Determination of the global stiffness matrix

according to the section forces obtained for the
proceeding iterative of increment step:

en
m

n
m )(= ∑ KK

2. Determination of the global load vector, which
can be changed during iteration as finite
element stiffness changes:

en
m

n
m )(= ∑ FF

3. Computation of new displacements:
n

m
1n

m
n

m  )(= FKv
−∑

4. Iterative procedure is continued, if the
displacement norm has not been satisfied.

Characteristic displacements are tested. If instability
occurs, some of the characteristic displacements
change the sign and displacement norm suddenly
increases.

The calculation period depends on many parameters
but for a well selected model it can be estimated to 10
increments with 10 iterations in each increment.

2.4 Accuracy of the numerical procedure

Incremental iterative alghoritm and the described
numerical model generate errors which can be
classified as:

1. geometrical nonlinearity error εGD, caused by
discretization density and by the selection of the
shape function over the finite element,

2. material nonlinearity error εMD,
3. iterative procedure error εIT,
4. incremental procedure error εIN.
Total error of the model is expressed as the least

favourable combination of individual errors:
INITMDGDT εεεεε +++≤ (6)

In examples of steel structures, total error is mainly
generated by the error of the input parameters of the
displacement accuracy εu2, the error of the section
forces εu1 and the load increment i:

)1(i 1u2uT εεε ++= (7)

where εu1 is generally selected between 0.02 and 0.10,
εu2 less than 0.03, and i=0.02 . Assuming that
εu1=0.05, εu2=0.02, the total error is:
εT=0.02+0.02·(1+0.05)= 0.041.

Since failure load is found mainly in one - half of
the unrealized increment, the average error is:

ii
2
1

1u2uTsr ⋅++= εεε (8)

In the specific example the average error is:
εTsr=0.02+0.01+0.001=0.031.



A. Juriæ, A. Mihanoviæ: Bearing capacity spectra for steel structures

4 8 ENGINEERING MODELLING 14 (2001) 1-4, 45-53

3. BEARING CAPACITY SPECTRA

The bearing capacity spectra result from the
stability analysis and bearing capacity of individual
linear elements of truss and frame steel structures. The
analysis is based on the series of numerical
experiments on slender elements which are subject to
centric and eccentric compressive loads taking into
consideration material and geometrical nonlinearity.

The parameters which influence the degree of the
critical force are nonlinearity of the material,
imperfection of the system and eccentric load activity.

The eccenticity of structure elements can be caused
by the deviation of the cross-section dimensions
(rolling tolerance), by the deviation of the column axis
from the straight line as well as by the deviation of the
centric force.

By eccentric loading, eccentricity and material
nonlinearity are related, so that the length of buckling
and slenderness become changable, dependent on the
loading level due to the change of the cross-section
stiffness.

Finally, it can be concluded that in the nonlinear
field there are no explicit expressions and it is therefore
necessary to give an approximate degree of the
structure reaction.

The examined column structure with the used
sections and its numerical model are illustrated in
Figure 5.

The column structure is exposed to the starting load
N=10 kN which is varied together with the column
length and the load system is illustrated in Figure 6.

In addition to this system there is also a
combination of longitudinal and horizontal forces at
the top of the column (e=H ⋅h/N) as well as a
combination of longitudinal force and constant loading
w along the column length (e=w⋅h2/2N).

The chosen load system is less acceptable than
these two because it can successfully substitute other
systems of structure loading.
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Fig. 5  Construction and discretized model of a steel column

The steel model is divided into four two-node
straight FE with axial, flexural and shear stiffness.
Each FE is divided into 20 SE. The computation is
performed with the real Fe 360 characteristics.

In order to examine the load behaviour depending
on the slenderness, the column height is varied
equivalently to the slenderness λ=0-300 dependent on
the cross-section form.
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Fig. 6  System of a eccentric load column

Several types of sections have been examined and
the results are demonstrated as a non-dimensional
diagram of the bearing capacity spectra for different
eccentricity cases (Figures 7 to 10).

On the abcissa there is slenderness for linear-elastic
materials and given load system and it is as follows
λ0=l i0 /i0 where l i0  is the buckling length and

000 A/Ii = is the initial inertia radius. On the
ordinate there is a relation between the failure
compressive load for the given eccentricity and the
failure compressive load by choice of the short column
v=Nk/N0, and it is as follows ε=e0/i0.

Consequently, the section form of steel structures
affects the bearing capacity curves. Differences are
particulary noticable as eccentricity increases.
Therefore, some sections can be grouped according to
the same or a very similar form of bearing capacity
curves as it is shown in Table 1.

Sections are grouped according to the curvature of
bearing capacity curves for the eccentrities bigger than
zero. As it can be seen from Table 1, the most curved
bearing capacity curves have »high« I-sections, right
after that all hollow sections, then I-sections and finally
all full and unsymmetrical sections.

Table 1 Sections grouped according to the form of bearing capacity curves

Ordinal number 1. 2. 3. 4.

sections
I-sections for

h > b

  
hollow sections

I-sections
for h=b

  
solid and unsymmetrical

sections

A/ Loading schemes B/ Selected loading scheme
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Fig. 7  Bearing capacity spectra of a steel column for the full circle and a hollow square section [7]
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Fig. 8  Bearing capacity spectra for the hollow rectangular and I-section (h>b) [7]
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Fig. 9  Bearing capacity spectra for the hollow round and L-section [7]
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Fig. 10  Bearing capacity spectra for the full rectangular and I-section (h=b) [7]

ε =0.00

ε  =0.10
ε  =0.20

ε  =0.30
ε  =0.50

ε  =0.70



A. Juriæ, A. Mihanoviæ: Bearing capacity spectra for steel structures

ENGINEERING MODELLING 14 (2001) 1-4, 45-53 5 1

Now, for each group of sections a particular spectra
diagram can be adopted as it can be seen in Figures
11, 12, 13 and 14.

After this procedure, all the obtained diagrams of
bearing capacity spectra, based on the series of
numerical experiments, can be used in the
dimensioning procedure.
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The results obtained by the nonlinear computation
can be compared with those defined by DIN 18800 and
EUROCODE 3. Figure 15 illustrates buckling curves
according to the mentioned norms [8, 9].

The results of the nonlinear analysis are
demonstrated in Figure 16.

Fig. 11  Bearing capacity spectra of a steel column for I-
sections h>b [7]

Fig. 12  Bearing capacity spectra of a steel column for all
hollow sections [7]
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Fig. 13  Bearing capacity spectra of a steel column for »low«
I - sections [7]

Fig. 14  Bearing capacity spectra of a steel column for: a) all
full; b) unsymmetrical sections [7]
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- nedovoljno ispitani presjeci,
preporuèuje se za visokoèvrste èelike

- šuplji presjeci i I-profili za h/b>1,2

- I-profili za h/b<1,2

EUROPSKE LINIJE IZVIJANJA
PREUZETE IZ DIN-a
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- I-profili za t>80mm

 T>80mm

 t<40mm

 t<40mm

λ λ π σ= / /E v

- šuplji presjeci
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- I-profili za h/b<1,2

LINIJE IZVIJANJA DOBIVENE
NELINEARNIM PRORAÈUNOM

- puni i nesimetrièni profili

 t<40mm

 t<40mm

Fig. 15  Buckling curves according to EUROCODE 3, taken over from DIN 18800

Fig. 16  Buckling curves obtained by nonlinear computation

4. CONCLUSION

The analysis results are presented by non-
dimensional diagrams which present the dependance
of slenderness and critical force on the given
eccentricity and they show that the sequence of
buckling curves for individual sections is equivalent
to the sequence defined by the above-mentioned rules.

Thus, it is proved that diagrams can be recommended
for determing the bearing capacity of steel elements
subject to eccentric load.

Diagrams obtained by geometrical and nonlinear
models are applicable to all types of plain structures
and available to engineers who need not have
knowledge either of material or geometrical nonlinear
models.

European buckling curves
(accord. to DIN codes)

a - hollow sections; I-sections for h/b>1.2

b - I-sections for h/b≤1.2

a0 - insufficient tested sections
(recommended for high tensile steel)

c - solid and asymmetric sections

d - I-sections for t>80 mm

Buckling curves obtained
from nonlinear analysis

I-sections for h/b>1.2

hollow sections

I-sections for h/b≤1.2

solid and asymmetric sections
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SPEKTRI DIJAGRAMA NOSIVOSTI ÈELIÈNIH KONSTRUKCIJA

SAŽETAK

U ovom radu prezentiran je postupak za dobivanje spektara dijagrama nosivosti kroz analizu stabilnosti
elemenata štapnih èeliènih konstrukcija pomoæu materijalno i geometrijski nelinearnog modela. Spektri dijagrama
su prikazani u bezdimenzionalnom obliku za svaku grupu popreènih presjeka, a predstavljaju ovisnost vitkosti i
kritiène sile za zadani ekscentricitet. Rezultati analize usporeðeni su s postojeæim normama iz podruèja stabilnosti
èeliènih konstrukcija i pokazuju da su odstupanja minimalna. Dijagrami ne zahtijevaju posebne obuke ni znanja
inženjera te su tako dostupni inženjerskoj praksi. U odnosu na klasiène proraèune, uporaba ovih dijagrama
dobivenih uz uvažavanje materijalne i geometrijske nelinearnosti omoguæuje racionalnije iskorištavanje materijala
i konstrukcija.

Kljuène rijeèi: materijalna i geometrijska nelinearnost, spektar dijagrama nosivosti, èeliène konstrukcije, analiza
stabilnosti.
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