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SUMMARY

Sudies on the stability problem when a viscous incompressible fluid isfilled into two circular concentric cylinders
are usually conducted using the following boundary conditions. the outer cylinder remains stationary, and the
inner cylinder rotates with constant angular speed. In this paper, we will apply these same boundary conditions to
solve the stability problem, but with a wavy inner cylinder. The main purpose of the present research is to find the
effects of the asymmetric inner cylinder on the centrifugal stability problem using of the principle of analogy and
superposition, which is obtained from the effort of former researchers in time-dependent Couette flow. The result
shows that the critical Taylor number and critical axial wavelength are inversely proportional to the numbers of the
peaks of inner cylinder, and the difference between critical Taylor numbers for inner cylinders of different peaks
increases when their peak height increases.
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1. INTRODUCTION

The stability problem of a viscous fluid owing to
two concentric rotating cylindersis of both academic
and engineering application interest. Taylor [1]
considered the stability problem both theoretically and
experimentally and he obtained a perfectly good
agreement. He got a criterion for the onset of a
secondary motion in the form of cellular toroidal
vortices spaced more or less regularly along the axis
of the cylinder. Later workers, such as DiPrima[2],
Chandrasekhar [3], Meksyn [4], Duty and Reid [5],
used different approaches to solve this problem for m
(the angular speeds of the two cylinders) very
negative and large. They all solved this problem for
axisymmetric disturbances with small-gap
assumption, where the mean flow can be replaced by
its average value. Krueger et al. [6] went to consider
the fully linear Taylor problem for negative m and
found that in narrow-gap approximation, when mis
less than 0.78, the most unstable disturbance is no
longer axisymmetric but nonaxisymmetric. As m

decreases below this value the most unstable mode
changes from m (azimuthal wavenumber)=0 to m=1
but then takes higher valuesin rapid succession. This
phenomenon has also been found experimentally by
Coles [7] and Snyder [8].

Experimental results from Snyder [8] showed that
flow field between arotating square inner cylinder and a
stationary circular cylinder is more unstable than the
system with acircular inner cylinder. Lewis[9] sketched
the cellular structure between arotating circular inner
cylinder and a stationary square outer cylinder by finite
difference method and Schumack et al. [10] established
the incipient instability criterion for flow field between
a rotating circular inner cylinder and a stationary
eliptical outer cylinder by spectral element method. All
their results show that asymmetric boundaries make
the stability decrease.

Kong & Liu [11] have solved two kinds of varied
surface speeds of theinner cylinder, oneisV=Vy(1-e5)
and the other is V=V y(1-e™)cosdt by using the
principle of analogy and superposition, where b isthe
factor of variable rotating speed and d isthe oscillating
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factor. In this paper, after we transform the elliptical
inner cylinder from R=R(q) to R=R(t) (i.e. from space
coordinate to time coordinate), we can solve the present
problem by Kong and Liu’s method.

Pharmacy and chemical engineering usualy need
to stir liquid feedstock, and the proper shape of stirrer
can make the feedstock well-mixed at lower stirrer
rotating speed (i.e. lower energy consumption), this
will lead their product to produce a higher market
competition. Another application is the design of the
stirrer in the washer. The cleaning effect of a washer
mainly depends on the ability of gtirring of the inner
cylinder, proper shape of tirring blades can make the
field well-mixed and enhance the cleaning effect. The
authors hope al the results in this paper can be useful
to this field.

2. PROBLEM FORMULATION AND
METHOD OF SOLUTION
Consider two infinite long concentric cylinders.
The inner cylinder is an dlliptical cylinder, and the
outer cylinder is a circular one. The major axis of the
inner cylinder isRy, and the radius of the outer cylinder

is Ry', the shape of the cylinders system is sketched in
Figure 1 and theinner cylinder can be described by:

R=Ry(1-ecos’q) =Ry(1- 2)- Ry(Z)cosay (1)

6-PEAKED INNER CYLINDER

Fig. 1 Shape of the cylinders system
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The cross section between the cylinders then forms
an annulus region, whereit isfilled with aviscousfluid.
Now we can establish a cylindrical coordinate system
(r, 9, 2, with the zaxis as their common axis. If the
outer cylinder remains stationary and at time t=0 the
inner cylinder impulsively starts and reaches a fixed
surface angular speed w, we can establish the
relationship between g and v by:

g=wt 2

V=wR=W[(1- 2R~ (SRy)cos2mt]  (3)

From Eg. (3), we can decompose the velocity v
into two parts: the time-independent part and time-
dependent one:

v:(l-%)NRl-(%)lecosam (3.1)

For rotating inner cylinder, we can assume that the
axisymmetry in perturbation velocities and pressure
still holds, and since they are periodic in the zdirection
and grow with time, we can describe the perturbation
velocities and pressure by:

u¢=u(r )cosa z el

kt
< (@)

ve=v(r)cosa z>e

we=w(r)cosa zx

pé= p(r)cosaz>el

where a denotes the wave number in zdirection, Kk is
the growth rate of perturbation. Since the cylinders
areinfinitely long and axisymmetric, the Naiver-Stokes
equations can be simplified to a time-dependent basic
flow field. We can utilize the Hankel transformation or
the so-called Fourier-Bessel transformation to solve the
basic flow velocity field. First, we define the Hankel
transformation and the inverse Hankel transformation

respectively:
Hankel Transformation:
R
f(a)= of (r)rBs(ar)dr )
R
Inverse Hankel Transformation:
R
f(r)= f (a)aBy(ar)dq (6)
R

where B, (ar)=J;(ar)Y1(aR,)-Y1(ar)J,(aR,) inwhich
g, r serve asweighting functions. J;(qr) and Y, (qr) are
Bessal functions of the first and second kinds of order
1, respectively. From the assumptions we have made,
it can be known that the basic flow velocity field is
independent of z and that it is also independent of g
because of circular annulus formed by rotating. If the
body force can be ignored, then the equation of basic
flow vel ocity becomes:
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1V, =DD'V
mt (7)
Rl<r< R2 0

where:

D= 1 D* = 1 + 1
qIr I

and the boundary conditions are;
V=wR; r=R;

V=0 r=R, (8)
Hankel transformation of Eq. (7) gives:
1dvV _ 2., Ji(oR —
lav._2,. J1(aRe) 27 ©
md r ~ Ji(qRy)
where:
R

V = ¢y(r)rBy(ar )dr
R
Equation (9) can be solved easily:
_ 2V Ji(dRe) ryt
e 10
T ‘Jl(qu)( ) (10)
the inverse Hankel transformation of Eq. (10) is:

1e'Zt

Jl(qu) Jl(qu)

Vv(rt)= pVoa J1(aR )J1(aRy )By(ar)
(11)

Equation (10) is the solution of the basic flow
velocity field. With simple transformation, the basic
velocity can be rewritten and divided into two parts:

VR, r2- R?
V(r,t):%Rf- RZZ_
0 (gR)J1(aR,) %
VY- gAY By(qr)e™
anl(qu) 31( ary)

(12)

The time-dependent basic flow velocity distribution
Eq. (12) was done by Tranter [12]. The first term of
the right hand side in Eq. (12) is the steady part of the
basic velocity profile, while the second term is the
unsteady part of the basic velocity profile. The
summation symbol Sin Eq. (12) indicatesthat all roots
of Eq. (6) must be calculated.

Suppose that the perturbed flow is of the form:

G=ut® +vévt and P=p¢ (13)
If we substitute the velocity terms in the Naiver-
Stokes Egs. by the relationship in Eq. (13) it gives:

M_ _ZVW 1 ﬂp¢+ (N U¢- ) (14)

qit r r qr
ﬂ\/¢ * 2 ve
—+u® V =n(Nvt — 15
g TuEV =n(RAve =) (15)
Iwe_ 1 9P, 2 (16)
qt r 4z

where:
2 2
2 ﬂ_+11+‘ﬂ_
w2 rir g2
and the continuity equation is:
(ru® | NCrwe) _
ﬂ—r+T_ a7)

Now, introducing the nondimensional coordinate
radia distance:

r 1R +R
R-R 2R-R
axia wave number;

X =

a=(R,-R))a
perturbation growth rate:

K
s =(R,- Rl)zn—

Reynolds number:
Re=Mo
n
Taylor number:
2

_MR - RONVE _ o (2-0)!
Ta= 2 p2y12 R 2 \y2
(Rz- RO (1-h%)h

ratio of the half length of magjor axis of inner cylinder
and the radius of the outer cylinder:

(18)
can be obtained, so that the boundary surfaces are now
a x= i—; . Thenwe eliminate p' and w' from Eq. (14)

to Eq. (17), drop the primes and substitute Eq. (4) into
them to get the linearized nondimensional perturbation
equations of motion:

(R1+Rz)

[DD" - a®- s][DD" - a®]u=Ta»a ¥, n—t—2(19)
[DD -a?-s]v=uDV, (20)
where:
D :i D* d +L
dx dx r(x)
and the boundary conditions are:
usv=D'u=0 at x:% (21)

Egs. (19) to (21) are the governing equations of
flow field which result from a constant velocity
Vo=wWRy, but from Eq. (3), we can find that an
additional time-dependent part will aso have influence
on the flow field. If we let:

V =wRy(1- %)costvt =U,- U,cosaut (22)

then the disturbed vel ocities and pressure which results
from cos2wt can be described by:
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ut=u(r )cozsazcocsZ\/\lekt =u(r)cosaz Rq el I‘J'Zi"‘”)]
v'JI:v(r)cosazcosZV\lekt =v(r)cosazRg e(k+2i‘“'t)]
we= w(r )sina zcos2we® =w(r)snazRg k2"

pt= p(r )cosa zcos 2weX = p(r )cosaz Ry e k2")]

(23)
where: Re]...] of [...].
Let the perturbation growth rate be:
2 .
S¢:(R2- Rl) (k+4\N|) (24)

n

Repeat the operation described above, we can
obtain the governing equation results from the varied
velocity cos2wit:

Re{[DD" - a?- s[DD" - a®Ju=

=TaxaZ ¥/, n R22+ Ry (25)
r

Re{[DD" - a®- sv=uxD'V,} (26)

If we rewrite Egs. (19), (20) and (12) in form of:

* * +
[DD" - a?-s ][ DD -az]u:Taa2v1v¥ (19)
.

[DD" - a?-s]v=uD"V, (209
hx?- 1
V(xt)=— +
(xt) xh?-1
(12)

+Ad teJl(l-—)Yl( ') MAUESAE ')ue"Z‘

i=1

where:
"
X =—I; =0R¢t ——Q(—)—
J1
-1
e u
- G
=pay(iiye Bl g
h ¢y (I_) 1Y
e 2’
é u
and:

I I
| jistherootsof Ja(=)Ya(l )- J1(1=) =0,

For Egs. (19), (20) and (25), (26) are subject to the
same boundary conditions, we can apply the principle
of analogy and superposition to obtain the exact form
of V, inaquasi-state sense:

_Us
= U—lCOS 2wt (27)
If we introduce another nondimensional parameter
WEWR, 2, then Eq. (27) can be rewritten to:
Uz
Vo = U, —=cos 2Wt (27)
Hence, the final governing equations are Egs. (19')

Vo
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to (25) ° :j—ZCOSZV\t , and Egs. (20') to (26) ~

1

Y2 osomt :
U

[DD" - a®- s][DD' - a®]u-

SchSZWRa[[ DD - a?-sq[DD - a?]u] =
1
—Ta>az\/v i

Y2 cosow R TaxaAv,y R R
Ul 2r

(28)

[DD - a’- s]v- %COSZ\NM[ DD’ - a?- sqv] =
1
* U2 *
=uD V; - U—COSZ\NXJIH DVZ]

1
(29)

and the boundary conditions are still Eq. (21).

The derivation for the cases of four-peaked and
six-pesked inner cylindersis still Eq. (1) to Eq. (28),
but the shape of the inner cylindersin Eqg. (1) should
be changed into the form of R=R,(1-eccos?2qg) and
R=R; (1-ecos?3q), respectively.

3. RESULT AND DISCUSSION

As mentioned before: what wetry to find out isthe
Taylor number that contents governing eguations, and
the axial wave number that corresponds to the
governing eguations. But it doesn’t indicate that each
of the Taylor number is the borderline of the stability
and instability of the flow field. Actualy, the angular
speed of inner cylinder is increased step by step, and
when it reaches a certain level, the instability occurs;
the so-called critical Taylor number is corresponded
by the lowest angular speed that makes the flow field
unstable, and it is also the lowest one among the
crowded Taylor number which can make the flow field
unstable. This is the way that we find out the critical
Taylor number at a specific time, but we may not
predict the corresponding specific time of the critical
Taylor number onset, so after we keep down the critical
Taylor number of the specific time, we have to change
the time and repeat the steps stating above, until we
obtain the “rea” critica Taylor number that can judge
the whole process of time.

As shown in Figure 2, it is the comparison of
stablility for five dlipses with the same major axes but
different minor axes, the larger e indicates the greater
difference in length of the magjor axis and minor axis.
According to the figure, we know that: the greater
difference of the major axisand minor axisis, the lower
the corresponding stability should be. The corresponding
nondimensional time for instability onset will be getting
less by increasing the value of e, but generaly they
distribute among t=3.0t0 4.0. In Figures 3 and 4, we
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can find that for four-peaked and six-peaked inner
cylinders, there are similar phenomenon occuring. In
Snyder’s stability experiment of the asymmetric inner
cylinder, he found that the instability onset in his
cylinders system is similar to the toroidal, axisymmetric
structure between circular cylinder; but its
corresponding critical Reynolds number is ailmost ten-
times less than the one which appears in circular
cylinders system. In Figure 2 to Figure 4, we can find
that the stahility is indeed reduced by the asymmetric
inner cylinders, but its effect is not as large as Snyder
asserted. We conclude that the causes are:

(1) Thevaluesof h inthetwo cases are different; theh
of Snyder’sinstrument isabout 0.5, whichislarger
than h we adopt to calculate, 0.1. This is because
the flow field with narrow gap width is more
unstable than wider one; and the added disturbing
source will have larger effect on the former one.

(2) After Snyder’ s conversion of square inner cylinder,
the value of e is only about 2.9, thus, this kind of
stability drop absoultely is not caused by e. Besides
the cause mentioned above, the other is that the
boundary of inner cylinder is not a smooth curve,
so this discontinuous boundary makes the stability
far lessthan our estimate.

In Figures 5 to 7 they are plotted as functions of
their geometric shape for h=0.1, and e=0.05, 0.1and
0.3. Asseen in each of figures, although the maximum
depth of the concavity of inner cylnder (€) isthe same,
yet the stability of the flow field decreases as the
number of peaksincreases, and the stability difference
between cylinders becomes significant as eincreases.
From aphysical point of view, the increasing in number
of peaks enhances the frequency of disturbing in flow
field, and larger e means enlarging in surface area of
“blades’. Therefore, besides the original centrifugal
effect, irregular configuration of the inner cylinders
makes the flow field more unstable.

It has been proved by both theoretical and
experimental methods that in the narrow gap system, if
we keep the outer cylinder stationary, the value of
nondimensional critical wave number a, that
corresponds to the onset of instahility is about p, this
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suggeststhat the cross section for Taylor vortex isnearly
sguare; however, with the increasing of the gap width,
the critical wave number a_ will increase. In Figure 8,
we can find out that no matter what kind of dlipsesare,
their corresponding critical wavelength is about 4. To
convert into a general type of nondimensional critical
waveength, we divide dimensional wavelength by gap
width (R,-R;) instead of theradius of inner cylinder (R,)
and we abtain its critical wavelength that is about 0.44;
that is, itsnondimensiond critical wave number is about
4p. In circular cylinders system, such a short critical
wavelength may not occur even if we reduce the h to
0.1. Wethink that when the asymmetric cylinder rotates,
besides the supply of the centrifugal force, and the
energy which the “blades’ wipe out the fluid particles,
the vortices will gather around the outer cylinder; it is
also the reason why the wavelength of vortices is so
short. Thus, in Figures 8 to 10, we can find out that as
the number of peaks increases, the critical wavelength
reduces; and as the e increases, the decreasing of
wavelength becomes more apparent.

4. CONCLUSIONS

In the case of co-axial cylinders, if outer circular
cylinder is kept stationary, the geometric shape of the
rotating cylinder will indeed have influence on the
stability of flow field, generaly speaking:

1. The stability of the flow field will reduce as the
number of peaks increases, that is, with the same
ratio of the length of the inner cylinder (R,) and the
length of the outer cylinder R,), and the same
maximum depth of concavity of inner cylinders (e),
Tagcirculan™ Tac(ellipse)™ Tac(four_peak)™ Tc(six_peak)
and as the maximum depth of concavity of Tnner
cylinders increases, the difference of the stability
between each geometric shape will become more
significant.

2. With the increasing number of peaks, the
nondimensional critical wavelength will be reduced;
and with the increasing of the maximum distance
of each concavity of inner cylnders, the decreasing
of wavelength becomes more apparent.

Fig. 2
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STABILNOST TAYLOR-OVOG VRTLOZNOG TOKA IZMEDBU
ROTIRAJUEAEG VALOVITOG UNUTRASNJEG CILINDRA |
NEROTIRAJUAEG OKRUGLOG VANJSKOG CILINDRA

SAZETAK

Prouéavanje problema stabilnosti kada su dva okrugla koncentriéna cilindra ispunjena nestlagéivom viskoznom
tekuzinom obieno se vrsi pomozu slijedezih rubnih uvjeta: vanjski cilindar ostaje nepomiean, a unutrasnji cilindar
rotira konstantnom kutnom brzinom. U ovom radu primijenit @emo iste rubne uvjete za rjeSavanje problema
stabilnosti, ali s valovitim unutraSnjim cilindrom. Osnovna namjera ovog istrazivanja je pronalazenje djelovanja
asimetrienog unutrasnjeg cilindra na centrifugalni problem stabilnosti pomoau naéela analogije i superpozicije Sto
su uz napor postigli bivsi istrazivaei u vremenski ovisnom Conette-ovom toku. Rezultat pokazuje da su kritiéan
Taylor-ov broj kao i kritiéna osovinska valna duljina obrnuto proporcionalni brojevima najvisih toeaka unutrasnjeg
cilindra, a razlika izmedu kritienih Taylor-ovih brojeva za unutrasnje cilindre razliéitih najvisih vrhova povezava
se kada se povegava i visina njihovog vrha.

Kljuéne rijeei: centrifugalni problem stabilnosti, Taylor-ov vrtlozni tok, nestlagiva tekugina, valoviti unutrasnji
cilindar, nagelo analogije.
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