
Y. Li, S.H. Leong: CMAC neural network method with application to kinematics control of a redundant manipulator

ENGINEERING MODELLING 14 (2001) 1-4, 7-13 7

SUMMARY

The inverse kinematics problems of redundant manipulators have been investigated for many years. The
conventional method of solving this problem is through applying the Jacobian Pseudoinverse Algorithm, which is
effective and able to resolve the redundancy for a redundant manipulator. However, computational effort makes it
not suitable for real time control. Recently, neural networks have been widely used in robotic control because they
are fast, fault-tolerant and able to learn. In this paper, we will present the application of CMAC (Cerebellar Model
Articulation Controller) neural network for solving the inverse kinematics problems in real time. Simulations have
been carried out for a five-link manipulator in order to evaluate the performance of the CMAC neural network.
Through computer simulation, we found CMAC NN method is especially suitable for real time control of robots and
solving nonlinear function approximation problem.

Key words: inverse kinematic problem, neural network method, redundant manipulator, real time control.

1. INTRODUCTION

Robotic manipulators have been widely used in
different industries in order to perform many kinds of
specific work such as welding, painting, assembling,
nuclear material handling, space and sea exploring etc.
Control of a manipulator is extremely important, which
involves trajectory planning, inverse kinematics and
dynamics calculations as well as control algorithms
and strategies. Among which, inverse kinematics of
redundant manipulator is the interest of this paper.
Kinematically redundant manipulators are of special
interest due to their redundancy and can be utilized for
avoiding singularities, obstacles, working in limited
workspace and increasing fault-tolerance capability.

Conventionally, the Jacobian Pseudoinverse
Algorithm [1] has been applied to solve the inverse
kinematics problems due to its ability to satisfy
additional constraints through mapping the velocities
corresponding to the additional constraints into the null
space of the Jacobian (J) while tracking the desired
workspace trajectory. However, the Jacobian
Pseudoinverse Algorithm involves the inversion of the
J matrix which can present a serious inconvenience

UDC 621.391:681.3.06
Original scientific paper

Received: 21.03.2001.

CMAC neural network method with
application to kinematics control of a

redundant manipulator
Yangmin Li and Sio Hong Leong

Faculty of Science and Technology, University of Macau, P.O. Box 3001, MACAU
e-mail: YMLi@umac.mo

not only at singularity but also in the neighborhood of
a singularity, though the damped least squares (DLS)
inverse can render the inversion better considered from
numerical viewpoint.

Recent years, neural networks (NN) [2] have been
successfully applied in robotic control. Their
generalization capacities and structures make them
robust and fault-tolerant in algorithms. They are able
to solve a problem that they have not solved before.
Also, NNs are composed of many neurons, even
though some of them are damaged, the output of the
network will not have been affected too much. Another
advantage of NNs is their ability to solve highly
nonlinear problems. The properties of NNs above
make them so promising in application to the robot
control problems.

There are many kinds of NNs [3]. Among which,
CMAC (Cerebellar Model Articulation Controller)
neural networks [4, 5] will be selected in this paper
due to their speed of convergence as well as its simple
δ-learning method. CMAC neural network was
proposed by Albus in 1975 in order to simulate the
function of our cerebellum. It is an associative neural
network in which the inputs determine a small subset



Y. Li, S.H. Leong: CMAC neural network method with application to kinematics control of a redundant manipulator

8 ENGINEERING MODELLING 14 (2001) 1-4, 7-13

è& ∈Rn represents joint velocity vector, and J(θ)∈Rm×n

is the Jacobian matrix.
The inverse kinematics problem is to determine the

joint variables corresponding to a given end-effector’s
position and orientation. That is, given a desired
workspace trajectory, how we can find out the
corresponding joint space trajectory. This is a complex
problem since redundant manipulators have more than
necessary degrees of freedom (DOF), multiple or
infinite solutions may exist. Moreover, the equations
to solve are usually nonlinear and it is difficult to find
a closed-form solution.

Thus, our main concern is to solve the following
inverse kinematics equation:

( ) xJè && è1−= (3)

Since the manipulator is redundant (n>m), the
Jacobian matrix is not square. Usually we can solve
Eq. (3) by using the pseudoinverse of the Jacobian that
locally minimizes the norm of joint velocities [1].
Equation (3) now becomes:

( )xJè && è+= (4)
where matrix J+ is:

1)T(T −=+ JJJJ (5)
Furthermore, through:

( ) ( ) aqJJIxJè &&& +−++= θ (6)

where aq&  is a vector of arbitrary joint velocities
projected in the null space of J. We can resolve the

redundancy by specifying aq&  so as to satisfy an
additional constraint.

As we can see, the above pseudoinverse
formulation involves the inverse of J and a lot of
calculations are needed for solving the equation. Thus
it is not suitable for real-time control.

3. CMAC NEURAL NETWORK METHOD

3.1 Principles

The structure of CMAC neural network [5] is
shown in Figure 1.

of the network and that subset determines the outputs
corresponding to the inputs. The associative mapping
property of CMAC assures local generalization, that
is, similar inputs produce similar outputs while distant
inputs produce nearly independent outputs. CMAC is
similar to perceptron, although it is a linear relationship
on the neuron scope, in overall it is a nonlinear
relationship.

Many researchers investigated the application of
CMAC neural networks. W.T. Miller III etc. [5]
developed a robot tracking system consisting of a
manipulator attached with a video camera for tracking
an object on a conveyor and having the image of the
object specifically positioned and oriented on the
screen without giving any robot kinematics
information, height measurement or any camera-screen
calibration. The CMAC was used to learn all these
parameters. Moreover, CMAC was modified by C.J.B.
Macnab etc. [6] to utilize radial basis functions for
precision control of flexible-joint robots in order to
deal with the elasticity. E. Oyama etc. [7] proposed a
Modular Neural Net System for learning inverse
kinematics in order to deal with the multi-valued and
discontinuous function of the inverse kinematics
system. J.F. Gardner etc. [8] investigated the
application of neural network in a two-link
manipulator trajectory tracking, in which the NN was
used to compute the inverse of the Jacobian matrix. A.
Paula etc. [9] applied Attentional Mode Neural
network (AMNN) in leading a robot arm in 3-D space
to a goal point in real time. PSOM Network was
presented by J.A. Walter [10] to learn the inverse
kinematics based on only 27 data points.

This paper is organized as follows. Section 2
presents the network method in solving the complex
inverse kinematics problems. Section 3 presents the
CMAC neural network in solving the complex inverse
kinematics of manipulators. Simulation will be
performed with a 5-link planar manipulator tracking a
circle trajectory in Section 4. Finally some conclusions
are presented in Section 5.

2. CONVENTIONAL MANIPULATOR
INVERSE KINEMATICS

For a kinematic redundant manipulator, the end-
effector position is a function of the joint variables which
can be expressed as the following kinematics equation:

( )èx f= (1)

where: x∈Rm  denotes end-effector position vector and
θθ∈Rn is the joint angle vector. Here n>m in case of
redundant manipulator and r=n-m is defined as degree
of redundancy.

The differential kinematics equation can be derived as:

( )èJx && θ= (2)

where x& ∈Rm denotes end-effector velocity vector,, Fig. 1   Block diagram of CMAC

ΣΣ
Input Space

Conceptual Memory

Physical Memory

Output

Y = F(s)

R
an

do
m

 M
ap

pi
ng

s1

s2
s3

C points

s

A

A’



Y. Li, S.H. Leong: CMAC neural network method with application to kinematics control of a redundant manipulator

ENGINEERING MODELLING 14 (2001) 1-4, 7-13 9

The input vectors in the input space s are a number
of sensors in real world. Input space consists of all
possible input vectors. CMAC maps the input vector
into C points in the conceptual memory A. As shown
in Figure 1, two “close” inputs will have overlaps in A,
the closer the more overlapped, and two “far” inputs
will have no overlap.

Since practical input space is extremely large, in
order to reduce the memory requirement, A is mapped
onto a much smaller physical memory A’ through hash
coding. So, any input presented to CMAC will
generate C physical memory locations. The output Y
will be the summation of the content of the C locations
in A’.

From the above, we can see that the associative
mapping within the CMAC network assures that
nearby points in the input space generalize while
distant points do not generalize. Moreover, since from
A’ to Y is a linear relationship but from s to A’ is a
nonlinear relationship, the nonlinear nature of the
CMAC network perform a fixed nonlinear mapping
from the input vector to a many-dimensional output
vector.

3.2 Learning

Network training is typically based on observed
training data pairs s and Yd, where Yd is the desired
network output corresponding to the input s, using the
least mean square (LMS) training rule. The weight can
be calculated by:

( ) ( ) ( )
C

sYdY
tw1tw

−
+=+ η (7)

where η is the learning step length.
Thus, if we define an acceptable error ε, no changes

needed for the weights when [Yd-Y(s)]≤ε. The training
can be done after a set of training samples being tested
or after each training sample being tested.

3.3 Solving inverse kinematics problems of
kinematically redundant manipulators

Here we present the application of CMAC neural
network in the inverse kinematics control of the

manipulator as shown in Figure 2. By analyzing the
block diagram, we can obtain:

eXX 1t
d

1t K+= ++ && (8)

which is equivalent to:

0ee =+ K& (9)
If K is a positive definite matrix, the system is

asymptotically stable [1].
The shadowed box is our main concern since it

solves that inverse kinematics problem. The inputs are
the current manipulator configuration at time t (θ t) and
the desired end-effector position increments at time
t+1 (∆Xd 

t+1). The output is the corresponding joint
angle increments that are fed together with the current
joint angles to the robot manipulator in order to have it
moved to the desired configuration.

Here “NN” is the CMAC neural network and “Opt”
is the optimization process which is used to find the
desired joint angle increments corresponding to the
desired end-effector position increments as well as
satisfying specified additional constraints.

In fact, the inverse kinematics problems can be
solved by optimization method. However, optimization
process usually takes quite a long time and thus is not
suitable for real time control. Here we use CMAC
neural network to generate an initial solution ∆θ t+1

for the optimization process. The difference between
the initial solution ∆θ t+1 and the output of the
optimization process ∆θd

t+1 is feedback to modify the
weights of the CMAC neural network, that is, CMAC
neural network is learning to produce an output as
close as possible to the optimization output. Thus the
time spent in optimization can be reduced as the
CMAC neural network learns more and more.
Eventually, the output of the CMAC neural network
can replace that of the optimization process.

As for the optimization process, we apply the
gradient method to minimize the following objective
function:

èèeeU ∆∆βα TT

22
+= (10)

where e is the position error vector, ∆θθ is joint angle
changing vector, α  and β are the weight constants.

The second term on the right is for minimizing the
joint angle changes, thus smoothing the motion as well
as minimizing the energy consumption. Then we have:

ΣΣ K ∫∫ NN Opt Robot

Z-1 

ΣΣ 

ΣΣ  

ΣΣ  

Z-1 

Xd
t+1 

Xt 

e + 

_ + 

+ 

+ 
+ 

+ 

_ 

Ke 

∆Xd
t+1 

∆θt+1 ∆θd
t+1 θd

t+1 
θt+1 

Xt+1 

θt 
1t

dX
++&  

1t
X

++&

Fig. 2  Block diagram of CMAC NN for solving inverse kinematics problems



Y. Li, S.H. Leong: CMAC neural network method with application to kinematics control of a redundant manipulator

1 0 ENGINEERING MODELLING 14 (2001) 1-4, 7-13

TT èJe
è

U ∆βα
∆

+−=
∂
∂

(11)

where J is the Jacobian matrix and thus:

è
Uèè
∆

η∆∆
∂
∂−=+ k1k (12)

where, k is the number of iteration and η is the length
of learning step.

4. SIMULATION

In order to evaluate the performance of CMAC, we
have developed a simulation software under Microsoft
Windows 98 system using Borland C++ Builder [11,
12]. The UNH_CMAC code [13] written in C was
referenced in this paper, which includes multiple
designs for the receptive field lattice and the receptive
field sensitivity functions.

During simulation, parameters have been chosen as
follows: the sampling time ∆t=0.02s, constant
K=1/∆t=50 and the parameters for the optimization
are: α=300.0; β=1.0; η=0.003.

4.1 Manipulator kinematics

The manipulator for simulation is a 5-link planar
manipulator as shown in Figure 3. Each link is
connected with revolute joints (5-DOF, m=2, n=5,
r=n-m=3) as shown in Figure 4. No joint angle limits
are imposed on. The total length of the manipulator is
1.55 m with the first link of 0.5 m, second and third
link of 0.25 m, fourth and fifth link of 0.275 m. The
height of the base support is 0.35 m. The Denavit-
Hartenberg defined parameters of the manipulator are
listed in Table 1.

The kinematics equations of the 5-DOF planar
manipulator can be obtained as:













++++
++++

=
12345C5l1234C4l123C3l12C2l1C1l

12345S5l1234S4l123S3l12S2l1S1l

Z

X
(13)

where: l1, l2, l3, l4, l5 denotes length of each link
respectively and θ1, θ2, θ3, θ4, θ5 represents each joint
angle respectively. S ijklm=sin(θi+θj+θk+θl+θm ) ,
Cijklm=cos(θi+θj+θk+θl+θm), {i j k l m}={1 2 3 4 5}.

The relationship between the end-effector velocity
and the joint angular velocity is:

( )θθ && J=x (14)
where:

( )


















∂

∂

∂

∂

∂

∂

∂

∂

∂

∂
∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

=

5

Z

4

Z

3

Z

2

Z

1

Z
5

X

4

X

3

X

2

X

1

X

θθθθθ

θθθθθ
θJ

in which:

1

X

θ∂
∂

 = l1C1+l2C12+l3C123+l4C1234+l5C12345

2

X

θ∂
∂

 = l2C12+l3C123+l4C1234+l5C12345

3

X

θ∂
∂

 = l3C123+l4C1234+l5C12345

4

X

θ∂
∂

 = l4C1234+l5C12345

5

X

θ∂
∂

 = l5C12345

1

Z

θ∂
∂

 = - (l1S1+l2S12+l3S123+l4S1234+l5S12345)

2

Z

θ∂
∂

 = - (l2S12+l3S123+l4S1234+l5S12345)

3

Z

θ∂
∂

 = - (l3S123+l4S1234+l5S12345)

4

Z

θ∂
∂

 = - (l4S1234+l5S12345)

5

Z

θ∂
∂

 = - l5S12345

The desired end-effector trajectory in our
simulation will be a circle with radius of 0.25 m and
centered at (0.5, 0.6). The desired angular velocity (w)
is 0.5π rad/s. The trajectory equations are as follows:

Xd(t) = 0.5 - 0.25cos(wt) (15)

Zd(t) = 0.25 + 0.25sin(wt) (16)
Thus the cycle time is 4 s. The initial configuration

of the manipulator is shown in Figure 3 with
θ1 (0)=1.730385 ,  θ2 (0)=-1.219399 , θ3 (0)=0.0,
θ4(0)=-2.29649 and θ5(0)=0.0.

In the following simulation, the norm error is
defined as:

( ) ( ) ( )[ ] ( ) ( )[ ]2tZtdZ2tXtdXtnormE −+−= (17)

Link ai-1 αi-1 di θi

1 0 0 0 θ1

2 L1 0 0 θ2

3 L2 0 0 θ3

4 L3 0 0 θ4

5 L4 0 0 θ5

6 L5 0 0 0

Fig. 3  Initial configuration of the
manipulator

Fig. 4  5-DOF Planar Manipulator

Table 1 Link Parameters



Y. Li, S.H. Leong: CMAC neural network method with application to kinematics control of a redundant manipulator

ENGINEERING MODELLING 14 (2001) 1-4, 7-13 1 1

and the average error is defined as:

)tw/(2

)tw/(2

1n
)tn(normE

avE
∆π

∆π
∆∑

== (18)

4.2 CMAC neural network structure

The structure of the CMAC neural network is
shown in Figure 5 where the input vector dimension is
7 and the output vector dimension is 5.

In our simulation, the number of vectors in CMAC
memory is 10000 and the generalization parameter is
64.

0.18 mm. The table shows also the average error
against number of iterations.

Now, we apply the CMAC neural network to do
the simulation. The optimization iterations and
learning rates are shown in Table 3. We found that after
1300 trainings, the maximum norm error is about
0.3 mm (0.02% of workspace dimension). The result
is comparable with that of applying the optimization
process alone. Notice that there is only one
optimization iteration, thus CMAC neural network
really can reduce the optimization time. In order to
observe whether the system is stable, we have tested
above 5000 trainings. From Table 3, we can see that
after 6000 trainings, the norm error is similar to the
result after 1000 trainings. Also, the average error is
mostly below 0.1 mm. Therefore we can say that the
system is stable.

Next, the robustness of the system will be tested.
The link length parameters of the manipulator are
changed and the CMAC neural network performances
are observed. The simulation results after 1000
trainings as mentioned above are used to test the
system. We change the dimension of the manipulator
to: l1=0.5 m; l2=0.1 m; l3=0.4 m; l4=0.35 m; l5=0.15
m. The result is shown in Table 4, from which we can
see that the average error caused by the dimension
parameter changing has decreased to a stable after
about 100 trainings. Also the maximum norm error is
about 0.25 mm after 700 trainings, which is close to
the result of 0.3 mm norm error above. Then we can
say that CMAC neural network is quite robust.
Because of the limitation on pages, we omit many
output figures from the simulation results.

CMAC
Neural

Network

θ1
t

θ2
t

θ3
t

θ4
t

θ5
t

∆Xt+1

∆Zt+1

∆θ1
t+1

∆θ2
t+1

∆θ3
t+1

∆θ4
t+1

∆θ5
t+1

Fig. 5  Input / Output of the CMAC neural network

4.3 Simulation results

First of all, we would like to see how the
optimization processes perform without the use of
CMAC neural network. Table 2 shows the results for
different optimization iteration numbers from 1 to 100.
We can see that up to 50 iterations, the norm error has
become stable with maximum norm error of about

Iterations Results

1

N o r m  E r r o r

T i m e  ( 2 0 m s )

2 0 01 5 01 0 0500

E
rr

o
r 

(m
m

)

45

40

35

30

25

20

15
10

5

0

Joint Angles

Time (20ms)
200150100500

Jo
in

t A
ng

le
 (r

ad
s)

2

1

0

-1

-2

Joint Velocities

Time (20ms)
200150100500Jo

in
t V

el
oc

iti
es

 (
ra

ds
/s

)

0

50

N o r m  E r r o r

T i m e  ( 2 0 m s )

2 0 01 5 01 0 0500

E
rr

o
r 

(m
m

)

0 . 1 8

0 . 1 6

0 . 1 4

0 . 1 2

0.1

0 . 0 8

0 . 0 6

0 . 0 4

0 . 0 2

Joint Angles

Time (20ms)
200150100500

Jo
in

t A
ng

le
 (r

ad
s)

2

1

0

-1

-2

Joint Velocities

Time (20ms)
200150100500Jo

in
t V

el
oc

iti
es

 (
ra

ds
/s

)

0

100

N o r m  E r r o r

T i m e  ( 2 0 m s )

2 0 01 5 01 0 0500

E
rr

o
r 

(m
m

)

0 . 1 8

0 . 1 6

0 . 1 4

0 . 1 2

0.1

0 . 0 8

0 . 0 6

0 . 0 4

0 . 0 2

Joint Angles

Time (20ms)
200150100500

Jo
in

t A
ng

le
 (r

ad
s)

2

1

0

-1

-2

Joint Velocities

Time (20ms)
200150100500Jo

in
t V

el
oc

iti
es

 (
ra

ds
/s

)

0

A v e r a g e  E r r o r

O p t i m i z a t i o n  I t e r a t i o n s

1 0 05 00

A
v

e
ra

g
e

 E
rr

o
r 

(m
m

)

1 2

1 0

8

6

4

2

0

Joint 1 Joint 2 Joint 3 Joint 4 Joint 5

Table 2  Performance of optimization process without CMAC



Y. Li, S.H. Leong: CMAC neural network method with application to kinematics control of a redundant manipulator

1 2 ENGINEERING MODELLING 14 (2001) 1-4, 7-13

Table 3  CMAC performance during training

Iterations
/ηCMAC /
Cycles

Results

12/1/50

N o r m  E r r o r

T i m e  ( 2 0 m s )

2 0 01 5 01 0 05 00

E
rr

o
r 

(m
m

)

0 . 1 8

0 . 1 6

0 . 1 4

0 . 1 2

0 .1

0 . 0 8

0 . 0 6

0 . 0 4

0 . 0 2

Joint Angles

Time (20ms)
200150100500

Jo
in

t A
ng

le
 (r

ad
s)

2

1

0

-1

-2

Joint Velocities

Time (20ms)
200150100500Jo

in
t V

el
oc

iti
es

 (
ra

ds
/s

)

0

 
Average Er ror 

No.  o f  Cyc les 
50  40  30  20  10  0  

A
ve

ra
g

e
 E

rr
o

r 
(m

m
)

 0.3  

0.25  

0.2  

0.15  

0.1  

0.05  

6/1/50

N o r m  E r r o r

T i m e  ( 2 0 m s )

2 0 01 5 01 0 05 00

E
rr

o
r 

(m
m

)

0 . 1 8

0 . 1 6

0 . 1 4

0 . 1 2

0 .1

0 . 0 8

0 . 0 6

0 . 0 4

0 . 0 2

Joint Angles

Time (20ms)
200150100500

Jo
in

t A
ng

le
 (r

ad
s)

2

1

0

-1

-2

Joint Velocities

Time (20ms)
200150100500Jo

in
t V

el
oc

iti
es

 (
ra

ds
/s

)

0

 
Average Error 

No. of  Cycles 
50  40  30  20  10  0  

A
ve

ra
g

e
 E

rr
o

r 
(m

m
)

 

0.064  

0.063  

0.063  

0.062  

0.062  

0.061  

3/1/50

N o r m  E r r o r

T i m e  ( 2 0 m s )

2 0 01 5 01 0 05 00

E
rr

o
r 

(m
m

)

0 . 2

0 . 1 5

0 .1

0 . 0 5

Joint Angles

Time (20ms)
200150100500

Jo
in

t A
ng

le
 (r

ad
s)

2

1

0

-1

-2

Joint Velocities

Time (20ms)
200150100500Jo

in
t V

el
oc

iti
es

 (
ra

ds
/s

)

0

 Average Error 

No. of  Cycles 
50  40  30  20  10  0  

A
ve

ra
g

e
 E

rr
o

r 
(m

m
)

 

0.14  

0.12  

0.1  

0.08  

0.06  

2/1/150

N o r m  E r r o r

T i m e  ( 2 0 m s )

2 0 01 5 01 0 05 00

E
rr

o
r 

(m
m

)

0 . 2 5

0 .2

0 . 1 5

0 .1

0 . 0 5

Joint Angles

Time (20ms)
200150100500

Jo
in

t A
ng

le
 (r

ad
s)

2

1

0

-1

-2

Joint Velocities

Time (20ms)
200150100500Jo

in
t V

el
oc

iti
es

 (
ra

ds
/s

)

0

A v e r a g e  E r r o r

N o .  o f  C y c l e s

1 5 01 0 05 00

A
v

e
ra

g
e

 E
rr

o
r 

(m
m

)

2

1

0

1/1/350

1/0.5/200

1/0.25/5450

N o r m  E r r o r

T i m e  ( 2 0 m s )

2 0 01 5 01 0 05 00

E
rr

o
r 

(m
m

)

0 . 2

0 . 1 5

0 .1

0 . 0 5

Joint Angles

Time (20ms)
200150100500

Jo
in

t A
ng

le
 (r

ad
s)

2

1

0

-1

-2

Joint Velocities

Time (20ms)
200150100500Jo

in
t V

el
oc

iti
es

 (
ra

ds
/s

)

0

A v e r a g e  E r r o r

N o .  o f  C y c l e s

6 , 0 0 04 , 0 0 02 , 0 0 00

A
v

e
ra

g
e

 E
rr

o
r 

(m
m

)

7

6

5

4

3

2

1

0

Joint 1 Joint 2 Joint 3 Joint 4 Joint 5

Table 4  Robustness performance after link lengths changes

Training Results

1st

N o r m  E r r o r

T i m e  ( 2 0 m s )

2 0 01 5 01 0 05 00

E
rr

o
r 

(m
m

)

8

7

6

5

4

3

2

1

0

Joint Angles

Time (20ms)
200150100500

Jo
in

t A
ng

le
 (r

ad
s)

2

1

0

-1

-2

Joint Velocities

Time (20ms)
200150100500Jo

in
t V

el
oc

iti
es

 (
ra

ds
/s

)

0

700th

N o r m  E r r o r

T i m e  ( 2 0 m s )

2 0 01 5 01 0 05 00

E
rr

o
r 

(m
m

)

0 . 2 5

0 .2

0 . 1 5

0 .1

0 . 0 5

0

Joint Angles

Time (20ms)
200150100500

Jo
in

t A
ng

le
 (r

ad
s)

2

1

0

-1

-2

Joint Velocities

Time (20ms)
200150100500Jo

in
t V

el
oc

iti
es

 (
ra

ds
/s

)

0

A v e r a g e  E r r o r

N o .  o f  C y c l e s

6 0 04 0 02 0 00

A
v

e
ra

g
e

 E
rr

o
r 

(m
m

)

1

0

Joint 1 Joint 2 Joint 3 Joint 4 Joint 5



Y. Li, S.H. Leong: CMAC neural network method with application to kinematics control of a redundant manipulator

ENGINEERING MODELLING 14 (2001) 1-4, 7-13 1 3

5. CONCLUSION

In this paper the CMAC neural network has been
applied in solving the inverse kinematics problem of
redundant manipulators. Simulations for a five links
manipulator have been performed to evaluate the
CMAC performance as well as its robustness
characteristics. We can see that CMAC is very good
for real time control application due to its fast learning
and simple computation properties. Further
improvements will be expected in future work, which
include increasing the fault-tolerant ability, performing
cyclic motions, adding some limitations such as joint
angle limits and joint velocity limits, and even obstacle
avoidance ability.

6. ACKNOWLEDGMENTS

This work is supported in part by grant RG008/00-
01W/LYM/FST and RG025/00-01S/ LYM/ FST from
Research Committee of University of Macau.

7. REFERENCES

[1] L. Sciavicco and B. Siciliano, Modeling and
Control of Robot Manipulators, The McGraw-
Hill Companies, Inc., 1996.

[2] L.H. Tsoukalas and R.E. Uhrig, Fuzzy and
Neural Approaches in Engineering , Wiley
Interscience, 1997.

[3] J.A. Freeman and D.M. Skapura, Neural
Networks, Algorithms, Applications, and
Programming Techniques, Addison Wesley, 1991.

[4] N.Y. Zhang and P.F. Yan, Neural Network and
Fuzzy Control, Tsing Hua University Press,
China, 1998.

[5] W.T. Miller III, F.H. Glanz and L.G. Kraft III,
CMAC: An associative neural network
alternative to backpropagation, Proc. of the
IEEE, Vol. 78, No. 10, pp. 1561-1567, 1990.

[6] C.J.B. Macnab and G.M.T. D’Eleuterio, Stable,
on-line learning using CMACs for neuroadaptive
tracking control of flexible-joint manipulators,
Proc. of the IEEE Int. Conf. on Robotics &
Automation, pp. 511-517, Leuven, Belgium, 1998.

[7] E. Oyama and S. Tachi, Modular neural net
system for inverse kinematics learning, Proc. of
the IEEE Int. Conf. on Robotics & Automation,
pp. 3239-3246, San Francisco, USA, 2000.

[8] J.F. Gardner, A. Brandt and G. Luecke,
Applications of neural networks for trajectory
control of robots, IEEE 5th Int. Conf. on
Advanced Robotics, Vol. 1, pp. 487-492, 1991.

[9] A.P.L. Ferreira and P.M. Engel, Positioning a
robot arm: An adaptive neural approach, Proc. of
Int. Workshop on Neural Networks for
Identification, Control, Robotics, and Signal/
Image Processing, pp. 440-448,1996.

[10] J.A. Walter, PSOM Network: Learning with few
examples, Proc. of the IEEE Int. Conf. on
Robotics & Automation, pp. 2054-2059, Leuven,
Belgium, 1998.

[11] M. Woo, J. Neider and T. Davis, OpenGL
Programming Guide ,  2nd Edition, Addison
Wesley Developers Press, 1997.

[12] R. Kempf and C. Frazier, OpenGL Reference
Manual: the official reference document to
OpenGL,  version 1.1, Addison Wesley
Developers Press, 1997.

[13] W.Th. Miller and F.H. Glanz, UNH_CMAC,
Version 2.1, The University of New Hampshire
Implementation of the Cerebellar Model
Arithmetic Computer - CMAC

METODA CMAC NEURALNE MREŽE I PRIMJENA NA KINEMATIÈKU KONTROLU
REDUNDANTNOG MANIPULATORA

SAŽETAK
Veæ mnogo godina ispituju se inverzni kinematièki problemi redundantnih manipulatora. Primjena Jacobian

Pseudoinverse Algorithm predstavlja konvencionalnu metodu za rješavanje ovog problema, a koja je djelotvorna i
sposobna riješiti redundanciju redundantnih manipulatora. Meðutim, napor utrošen na izraèun èini ga
neodgovarajuæim za kontrolu realnog vremena. Neuralne mreže mnogo se koriste u posljednje vrijeme za kontrolu
robota jer su brze, toleriraju greške i sposobne su za uèenje. U ovom radu predstavljamo primjenu CMAC
(Cerebellar Model Articulation Controller) neuralne mreže za rješavanje inverznih kinematièkih problema u realnom
vremenu. Izvršene su simulacije za manipulator s pet veza s ciljem ocjene rada CMAC neuralne mreže. Raèunalnom
simulacijom ustanovili smo da je CMAC metoda posebno pogodna za kontrolu realnog vremena robota i za
rješavanje problema aproksimacije nelinearne funkcije.

Kljuène rijeèi: inverzni kinematièki problem, metoda neuralnih mreža, redundantni manipulator, kontrola realnog
vremena.


