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SUMMARY

Modelling Molten Carbonate Fuel Cells (MCFC) is very difficult and the existing models are too complicated to
be used for controlling design, especially for on-line control design. This paper presents the application of neural
networks identification method to develop the nonlinear temperature model of MCFC stack. The hidden layer units
of the neural networks consist of a set of nonlinear radial basis functions (RBF). The temperature characters of
MCFC stack are briefly analyzed. A summary of RBF neural networks for the multi-input and multi-output (MIMO)
nonlinear system modelling is introduced. The simulation tests reveal that it is feasible to establish the model of
MCFC stack using RBF neural networks identification. The most important thing is that the modelling process
avoids complex analytical modelling that uses complicated differential equations to describe the stack. After being
tested, the model can be used to predict the temperature responses on-line which makes it possible to design online
controller of MCFC stack.

Key words: Molten Carbonate Fuel Cells (MCFC), Radial Basis Function (RBF), modelling, neural networks,
identification.

1. INTRODUCTION

Nowadays, the increasing energy demands as well
as preserving the global environment make it more and
more urgent to develop energy systems with readily
available fuels, high efficiency and minimal
environmental pollution. A fuel cell system is expected
to meet such demands for it is a chemical power
generation device that converts the chemical energy of
fuel directly into electrical energy without combustion
as an intermediate step. The fuel cell system has many
advantages over conventional power generation
equipment, such as high energy conversion efficiency,
modular design and very low environmental pollution.
A fuel cell system can get an overall efficiency up to
80% and a net electrical efficiency ranging from 40%
to 60%, which is higher than that of almost all other
energy conversion systems [1].

MCFC is now the most hopeful model to reach
commercialization after phosphoric acid fuel cell
(PAFC) [2]. The MCFC has undeniable advantages
over PAFC. MCFC can use various fuels such as coal
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gasification and nature gas. No expensive metals such
as Platinum etc. are needed as a catalyst and the costs of
the main materials are relatively low. These
characteristics allow a wide spectrum of applications for
an MCFC varying from central power generation to
industrial or commercial integrated power-generation.

The performance and lifespan of MCFC stack are
greatly dependent on the operating temperature. The
temperature range allowed for a stable cell
performance of MCFC is 600 to 700 °C, and the
normal operating temperature is 650°C [3]. Operating
at a temperature lower than 600°C the activities of
molten salts decrease and the cell performance drops
significantly. A higher operating temperature is
favorable for improving the working voltage and
output performance of MCFC. However, when the
operating temperature is higher than 700°C, material
corrosion accelerates and electrolyte loss enlarges
which increases the risk of short-circuit and shortens
the stack lifespan. Hence, tight control of the operating
temperature within a specified range and reducing its
temperature fluctuation are indispensable.
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Unfortunately, an accurate mathematical model is
indispensable either in classical control theories or
modern control theories. MCFC systems are worked
under high-temperature, closed, complicated
environments. An MCFC system integrates various
components, including entirely new components (e.g.
fuel cell) and new applications of conventional
components (e.g. reformer and heat exchanger) as well
as multiple recycling gas flow loops and multiple phase
flows and complex chemical and electro-chemical
reactions [4]. According to the analysis of MCFC
systems, it is known that MCFC systems is a nonlinear
system with MIMO and it is very difficult to model
MCFC systems [5]. Extensive studies on MCFC stack
modelling have been carried out for decades [6].
However, all the models developed are based on
matters, energy and momentum conservation laws,
with expressions that are too complicated to be used to
design a control system, especially for online control.

An alternative approach is to establish the
mathematical relationship of the dynamic system based
on input-output data. Neural networks have been an
attractive structure in such an approach. A large
number of identification and control structures and
algorithms based on neural networks have been
proposed [7]. However, practical applications of neural
networks for modelling and prediction of MCFC stack
can not be found in prior papers.

In the present work, the internal complexes of MCFC
stack are avoided, and RBF neural networks
identification technology is applied to set up the
nonlinear temperature model of MCFC stack. Firstly, the
main characters of MCFC stack are briefly analyzed in
Section 2. Then, a summary of RBF neural networks
for the MIMO nonlinear system modelling is introduced
in Section 3. Training and simulation tests are given in
Section 4. Finally, conclusions are given in Section 5.

2. DESCRIPTION AND ANALYSIS OF
MCFC STACK

A single cell's structure is shown in Figure l. A
single cell consists of an anode, cathode, electrolyte
plate, separator plates, corrugated plates, and current
collectors. The fuel and oxidant gases flow in the
anode and cathode side channel along the corrugated
plates. O2 and CO2  in oxidant gas react with the
electron at the cathode, and produce CO3

2-. CO3
2-

moves within the electrolyte plate perpendicularly from
cathode to anode by the driving force of concentration
difference. At the anode, H2 in the fuel gas reacts with
CO3

2-  and produces CO2, H2O and electrons by
electro-chemical reaction. Electrons released from the
reaction site are collected by the current collector and
pass the corrugated plate and separator
perpendicularly. The top and the bottom separators are
connected to external load equipments [8].

Cathode reaction: CO2+O2+2e-→CO3
-2

Anode reaction: H2+CO3
-2→H2O+CO2+2e-

Shift reaction: H2+CO2→H2O+CO

Fig. 1  Conceptual structure of a single cell

A single fuel cell has a potential of about 0.8 V with
a current of about 200~500 mA/cm2. To supply a higher
power, MCFC are used superimposed into the stack
where cells are electrically connected in series and
separated from each other by bipolar plates [4].

According to MCFC stack dynamic characteristic
[9], the temperature model of MCFC stack can be
described as:

[ ])t(),t()t(
dt

)t(d vTTT Φ== & (1)

Here, [ ]T
ca )t(v),t(v=v  is the input vector, i.e.,

the anode and cathode gas flowrates.

[ ] T
seca )t(T),t(T),t(T),t(T)t( =T  is the output

vector, i.e., the temperatures of anode, cathode,

electrolyte plate and separator.
The temperature responses of anode, cathode,

electrolyte plate and separator are mainly dependent
on three factors: the heat emitted by electro-chemical
reactions that cause the temperatures increase, the
convection heat loss with the exited gases that lowers
the temperatures, and the conduction loss by the stack
hardware. When the gases flow slowly, on the one hand
the reaction is adequate and less heat is lost, and on
the other hand, less heat is produced. On the contrary,
when the gases flow fast, on the one hand, the reaction
is inadequate and part of heat flows away with the
remnant gases, and on the other hand, more reaction
heat is produced so the ultimately stabilized
temperature is variable at different anode and cathode
gas flow rates. In general, in order to cool the stack
and ensure the fuel to be utilized completely, it is
assumed that the oxidant (i.e. compressed air to
cathode) is excessive and the fuel supply rate is not
beyond the maxim reaction rate capacity of the stack.

The object of the identification model is to simulate
dynamically the variant trails of temperature under
various gas flowrates. Thus, the identification model
can be described by a nonlinear discrete equation:

[ ])k(),k()1k( vTT Φ=+ (2)
Here, k is discrete-time variable.
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3. THE IDENTIFICATION STRUCTURE
AND ALGORITHM

3.1 Radial basis function neural networks

Feedforward neural networks trained with back
propagation algorithm (BPNN) have been widely
applied to system identification and control. However,
they have several drawbacks such as their proneness
to get stuck in local minima, their relatively slow
convergence rate and their difficulties to determine a
minimal but adequate architecture, etc. [10].

Similar to BPNN, the radial basis function neural
network (RBFNN) has the universal approximation
ability. Unlike the BPNN, RBFNN has the best
approximation property. Its approximation accuracy
properties are better than the other methods, including
multilayer perceptron networks [11]. Even more
important, the connection weights from the hidden
layer to the output layer are linear, which means that
the linear optimal algorithms can be used in RBFNNs
and that guarantees the convergence of the parameters
to the global minimum. In addition, while training
RBFNNs, only a part of the nodes will be affected by
any given input, and only a portion of the model
parameters may need to be adjusted, thus reducing the
training time and computational burden [8].

Similar to most feedforward networks, RBF neural
networks have an input layer, a nonlinear hidden layer
and a linear output layer. The nodes within each layer
are fully connected to the previous layer nodes. The
input variables are each assigned a node in the input
layer and connected directly to the hidden layer without
weights. The hidden layer nodes are RBF units. The
nodes calculate the Euclidean distances between the
centers and the network input vector and pass the
results through a nonlinear function [7]. The output
layer nodes are weighted linear combinations the RBFs
in a hidden layer. The structure diagram of RBF neural
networks with m inputs, p outputs and N hidden nodes
is given in Figure 2.
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where Ψj(X (k)) is a nonlinear function. Here it is
chosen to be a Gaussian activation function:

( )( ) ( )( )2
j

2
j CjkXexpkX λΨ −= (3)

where: Cj (j=1,2,...,N)∈RN is the center of the j-th
hidden node, which is a vector having the same
dimension as the input vector X(k); and λj is the width
of the j-th RBF hidden unit.

Then the i- th RBF network output can be
represented as a linearly weighted sum of N basis
functions:

( ) ( )( ) p,...,2,1ikXwwkY
N

1j
ji,ji,0

net
i =⋅+= ∑

=
Ψ (4)

where: wj,i and w0,i are the weights. w0,i is used to
compensate for the difference between the average
value over the data set of the RBFs activation and the
corresponding average value of the target outputs [7].

With the structure described above, the
transformation from the input layer to the hidden layer
is nonlinear, due to the use of Gaussian functions Ψ (⋅)
for RBFs. The hidden layer connected to the output
layer is linear.

3.2 Identification system of MCFC stack with
RBF networks

It has been proved that a wide class of nonlinear
systems can be represented by the following difference
equation model, i.e., nonlinear autoregressive model
with exogenous inputs (NARX) or named one-step
ahead predictor or series-parallel model [3, 12]:

Y(k)=F(Y(k-1),...,Y(k-ny),

U(k-1),...,U(k-nu)) (5)

Here, Y(k) is the output vector, U(k) is the input
vector. ny and nu are the lags of the output and input
respectively. F(⋅) is a nonlinear function.

For the MCFC stack, U(k)=[va(k),vc(k)]T is the
input manipulated vector, i.e., the anode and cathode
gas flowrates. Y(k)=[Ta(k),Tc(k),Te(k),Ts(k)]T is the
output vector, i.e., the temperatures of anode, cathode,
electrolyte plate and separator of the MCFC stack.

Fig. 2  RBF neural networks structure

For a data set consisting of m inputs, p outputs and
N hidden elements, the hidden unit can be expressed
as a matrix:
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The objective of this paper is to use RBF neural
networks to model the MCFC stack as described by
Eq. (1). Define the input vector of the network at
sample k as:

X(k)=[Y(k),Y(k-1),...,Y(k-ny),

U(k),U(k-1),...,U(k-nu)]T (6)

Here the dimension of the input vector, and also
the dimension of the centers of the hidden layer nodes,
is given by:

N= p⋅ny+m⋅nu (7)

where p and m are the number of outputs and inputs of
the system respectively, and N is the input vector
dimension.

The structure of the RBFNN identification system
is shown in Figure 3 [13]. TDL is the tapped delay line
that the output vector has for its elements, the delayed
values of the input signal.

caused by some centers being too close. Hence, an
adequate technique to determine RBF network centers,
i.e., the orthogonal least-squares (OLS) method has
been adopted here [14, 15].

After the network centers have been chosen, the
values of weights are also determined at the same time
from the solution of the following group of equations:
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The width parameters λj of the RBFs may be
calculated by many techniques. Here we chose all
widths to be equal to about twice the average space
between the basis function centers [7].

4. TRAINING AND SIMULATION TEST

Use the MATLAB neural network toolbox to
perform the training and simulation. Firstly, all the
experimental sampled data points are divided into a
training set and a testing set [15]. The former is used
in networks training procedure and the latter is used in
testing the validities of the networks model trained.

The training samples (training set) are 960
temperature response values under various gas
velocities. They are stored in a training data file and
will be supplied for the neural networks during the
training process. Based on satisfying the minimum
SSE conditions in Eq. (8) and shorter training time,
the neuron number is set to be 64. The training time
using a Pentium-II 266 MHZ computer was 61.38
seconds. While the same set of data were used to train
an MLP-BP network also with a hidden layer and 25
neurons, and on the same computer, the training time
for obtaining the same error level of SSE is 198.64 s.
The desired SSE is 0.15, and in the end of the training
process the SSE obtained is 0.143664. The adjustment
curve of error in training is given in Figure 4. In fact,
when the error decreases to about 0.14, it no longer
changes basically.

Fig. 3  The identification structure of MCFC stack
with RBF networks

3.3 Training algorithm of the RBF networks

In Figure 3, the predictive error or residual is
ε(k)=Y(k)-Ynet(k), where Ynet(k) is the predictive output
of the networks. In this paper, the criterion of training
an RBF network is to minimize the sum of squared
errors (SSE) below [7]:

( ) ( )
2

j k

net
j

d
jSSE kYkYE ∑ ∑ 



 −= (8)

where Yj
d(k) are the destination values of the network

output; here it is the sampled data from the
experiments.

Training of RBF neural networks can be divided
into a two-stage procedure [14]. The first stage
involves selecting the basis function centre vectors Cj
(j=1,2,...,N). The selection principle is that they should
be chosen to form a representation of the probability
density of the input data [7]. Most published papers
simply assume that the centers are arbitrarily selected
from input data points, which will often result in that
either the RBF neural networks perform poorly or the
computational burden of network training increases
largely. Moreover, numerical ill-conditioning
frequently occurs owing to a nearly linear dependency Fig. 4  Neural networks model error learning curve
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To validate the RBF-network model, use the neural
networks trained above to perform dynamic
identification simulation of MCFC stack. Under
various gases flowrates, comparing the discrete
temperature values calculated by the neural networks
and actual sampled temperature data (in testing set)
obtained from the experiments of the MCFC stack, we
obtain the results as Figure 5.

For simplicity and generality, in Figure 5, only the
comparing results of the anode and cathode centers of
co-flow MCFC stack at five different and typical gas
flowrates are given. The identification results of
electrolyte plate and separator have similarly variant
trends and are omitted here.

5. CONCLUSION

Based on the RBF neural networks identification
technology, a nonlinear temperature model of MCFC
stack is developed. The simulation results have shown
that the modelling accuracy is high and the RBF neural
networks model can be trained faster than a BP neural
networks model. The simulation results also reveal that
it is feasible to set up the model of the complex
nonlinear MCFC stack system based on RBF neural
networks identification. The most important thing is
that the modelling process avoids complex analytical
modelling and also avoids using complicated
differential equations groups to describe the stack so
that the input-output performance can be effected
quickly by neuro-calculation. The RBF-based model
can be used to predict the temperature responses on-
line which makes it possible to design online controller
of MCFC stack.
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NELINEARNO MODELIRANJE MCFC SKUPA ZASNOVANOG NA
IDENTIFIKACIJI RBF NEURALNIH MREŽA

SAŽETAK

Modeliranje Molten Carbonate Fuel Cells (MCFC) je vrlo teško, a postojeæi modeli su previše složeni da bi se
mogli koristiti za kontroliranje projektiranja, posebno za on-line kontrolu projektiranja. U ovom se radu opisuje
primjena metode identificiranja neuralnih mreža kako bi se razvio nelinearni model temperature za MCFC skup.
Jedinice skrivenih slojeva kod neuralnih mreža sastoje se od skupa nelinearnih radijalnih baznih funkcija (RBF).
Ukratko se analiziraju temperaturne osobine MCFC skupa. Uvodi se kratki pregled RBF neuralnih mreža za
višestruki input i višestruki output (MIMO) za nelinearni sistem modeliranja. Testovi simulacije pokazuju da je
izvedivo uspostaviti model MCFC skupa koristeæi identifikaciju RBF neuralnih mreža. Najvažnija stvar je da ovaj
proces modeliranja izbjegava složeno analitièko modeliranje koje koristi komplicirane diferencijalne jednadžbe za
opisivanje skupa. Nakon testiranja model se može koristiti za on-line predviðanje temperaturnih reakcija što
omoguæava projektiranje online kontrole za MCFC skup.

Kljuène rijeèi: Molten Carbonate Fuel Cells (MCFC), radijalne bazne funkcije (RBF), modeliranje, neuralne mreže,
identifikacija.


