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SUMMARY

Several models have been proposed in order to enlarge the class of nonlinear phenomena. In this article, a
simple model is proposed for chaos studies in nonlinear feedback systems. The model consists of a state, time delay
and a nonlinear element. It can be described as an autonomous continuous-time difference-differential equation
with only one variable. The richness of such system behaviour is numerically illustrated and chaotic behaviour is
presented. The computer generated chaos for the double-scroll attractor and bifurcation diagram are provided.
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1. INTRODUCTION

Traditionally, it was implicitly assumed that random
behaviour was due to extreme complexity of the
dynamical systems with higher number of independent
degrees of freedom. However, recent introduction of
chaotic dynamics tells us that randomness in the
dynamical systems does not necessarily involve an
enormous number of independent degrees of freedom
[1]. In the presence of a nonlinearity only a few
independent variables are sufficient to generate chaotic
motion. Consider the following deterministic ordinary
differential equations:

0x)0(x),x(fx ==& (1)

in which x∈Rn is the state vector dependent on t and
x&  denotes the derivative. The nonlinear function f(.)
may be dependent on t, x, and f(.) : R+×Rn→Rn. The
initial state vector at t=0 is x(0). The nonlinear function
f(.) may include a continuous or a discontinuous
nonlinearity. For a possible chaotic behaviour, the
system defined in Eq. (1) must contain at least three
degrees of freedom, n=3. However, the nonlinearity
and n=3 are not the only necessary conditions for a
system to exhibit chaotic behaviour, but also the system
trajectory has to be sensitive to initial conditions [1].
For the chaotic systems small changes in initial
conditions are amplified into very large changes in the
long-term behaviour, making the relationship between
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cause and effect so complicated as to be effectively
unpredictable. This complexity of the behaviour is due
to the internal, rather than external dynamics [2].

For autonomous continuous time nonlinear system
it has been reported that chaos cannot occur when
n=1, 2. Confirming this result, the engineering systems
given in Ref. [3] have at least three state variables.
Furthermore, models given to studying chaos such as
Chua’s circuits, Lorenz equations and pressure
transducer model are all in third order forms [4-6]. This
does not seem to be the case with systems with  delay,
a two-cell nonautonomous neural networks with delay
may appear chaotic attractor [7]. Here further it will
be shown that a simple continuous-time nonlinear
system may exhibit chaotic behaviour without taking
time delay too large.

2. THE SYSTEM DESCRIPTION

The engineering systems are nonlinear and
generally modelled based on the assumption that the
behaviour of the considered system depends on the
present states only. Although this assumption is
verified for large class of dynamical systems, there
exist situations that the system’s behaviour includes
also information of former states. These systems are
called time-delay systems. The study of the affects of
time delay in such systems is not only a theoretical
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Fig. 1  Vector field of system given in Eq. (2) for τ=0

In Figure 1 solid black dots at εδ±  represent
stable equilibrium points where open circle at origin
represents the unstable one. Since such system
behaviour is generally analyzed with small signal
methods, the local behaviours of this equilibrium
points are only obtained and discussed. Figure 1 shows
that the system trajectory moves and approaches the
stable fixed point at εδ  for any initial condition
satisfies x0>0. Similarly, if a negative initial condition,
x0<0, is chosen then the system trajectory approaches
to the negative equilibrium point at εδ−  and it can
be noted that there is no possibility of self-sustained
oscillations in this case.

4. NUMERICAL RESULTS

The dynamical behaviours of the system described
in Eq. (2) without any restriction may be only
examined numerically. The system described in Eq. (2)
is modelled in Matlab/SIMULINK® environment and
it is numerically solved by the use of fifth order Runge-
Kutta ordinary differential solver embedded in Matlab
toolboxes [12]. The following numerical results are
obtained for 0.001 integration step size and 10- 6

absolute and relative tolerances. The delay time τ and
the nonlinearity gain ε in Eq. (2) are fixed at unity. For
x(0)=0.1 state initial condition, the system response is
examined by change linear part gain δ. Note that the
delay time taken here is not too large and can occur in
many systems especially due to the measurement
devices. The system trajectory first is observed from
time response and then the system trajectory is depicted
in phase plane in such a manner that the integrator
input is plotted versus its output as analogue of vector
field illustrated in Figure 1.

The numerical results are obtained for δ=0.5, 0.9,
1.51 and 1.7 and the system trajectories are depicted
in phase plane, Figure 2 (a), (b), (c) and (d),
respectively. Figure 2(a) shows the system phase
portrait for δ=0.5 and it indicates that the trajectory is
asymptotically decaying at the positive equilibrium

interest, but it has also a practical importance. The
approximation of the time delay is not appropriate
method in most situations and gives rise instability
even in the linear systems. Furthermore, in most
situations even system operated at nearby of an
equilibrium point, time delay and nonlinearity both
occur in the feedback systems and they could not be
avoided such as time delay in sensors dynamics or
controller structure [8]. Therefore, investigation of the
dynamical behaviours of time delay system especially
without any restriction is one of active research areas.
Consider the  following nonlinear continuous system
in dimensionless form with one state variable:

)t(x)t(x)t(x 3 τετδ −−−=& (2)

where δ and ε are the system parameters. Here τ
corresponds to the delay time in which it represents
the time interval between the start of an event at one
point and its resulting action at another point in the
system. The time delay systems can be tackled from
many points of view. In particular, the models of such
systems can be considered as evolution in abstract
systems, differential equations on rings or modulus, or
as functional differential equations. However these
approaches are limited to the linear systems and their
extension methods to the nonlinear system are confined
to illustrate the global behaviour of the nonlinear
systems with delayed element.

Particularly the system given in Eq. (2) is used as a
simple model to observe self-oscillations in the
shipbuilding industry [9] and interestingly the
complexity of the system has not been reported yet.

3. FROM REGULAR TO COMPLEX
BEHAVIOURS

The effects of delay on both linear and nonlinear
systems are studied and their stability is discussed in
Ref. [10] with several approaches. Each described
approach has some advantages or disadventages
depending on the considered problem to be handled.
The effect of time delay on the dynamical behaviour
of one dimensional continuous nonlinear system is
studied in Ref. [11] where describing function methods
and pade approximation are employed for nonlinear
parts and time delay, respectively. The magnitude and
frequency of self-sustained oscillations are observed
and their dependence on delay time is studied. It has
been shown that the system given in Eq. (2) exhibits
self-sustained oscillations with sufficiently short delay
time. Increasing the time delay leads to undesirable
phenomena and it results in instability.

In order to illustrate dynamics behaviour of the
system let consider the system without time delay first
i.e. τ=0. In this case the system has three equilibrium
points, namely origin and εδ± . The vector field is
illustrated in Figure 1. The arrows on the x-axis
indicate the corresponding velocity vector at each

x
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&

interval of equilibrium points. The arrows point to the
right when 0x >&  and to the left when 0x <& . At
equilibrium points where 0x =& , there is no flow..
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point since a positive initial condition is chosen.
Conversely, for a negative initial condition the
trajectory will decay onto the negative equilibrium
point at εδ− . Increasing the value of δ  to 0.9 leads
to a self-oscillation as depicted in Figure 2(b) and
encloses the stable equilibrium point at εδ . One
can show that this self-sustained oscillation is stable
for a positive range of the state initial conditions. Note
that the results illustrated in Figures 2 (a) and (b) are
analogous to the results estimated by employing small
signal analysis given in Ref. [11]. Choosing the
parameter δ=1.5 yields the behaviour of depicted in
Figure 2(c). Here the system trajectory indicates
several oscillations with different amplitude and
frequencies. Note that the simulation interval time is
chosen large enough for Figure 2(c) to observe both
the transient and steady state responses of the system.
The trajectories depicted in Figures 2(a)-(c) are usually
considered as regular behaviours since their nature are
known and can be observed analytically with
approximation methods. However, increasing the
values of δ yields complex behaviours. For instance,
choosing the parameter δ=1.7 leads to the strange
behaviour depicted in Figure 2(d).

The unique character of chaotic dynamics may be
seen most clearly by examining the system to be started
twice, but from slightly different initial conditions. For
non-chaotic system, the uncertainty leads to an error
in predicting that it grows linearly with time. However,
for chaotic systems, on the other hand, the error grows
exponentially in time, so that the state of the system is
essentially unknown after a very short time. The time
response of the system is obtained for two nearby initial
conditions x0=0.1 and x0=0.10001 and a simultaneous
difference taken between them, e=x(t)0.1 - x(t)0.10001,
is depicted in Figure 3 for δ=1.7.

(a)
x

(b)
x

x x
(c) (d)

Fig. 2  Phase portrait of the system with τ=ε=1:
(a) for δ=0.5, the system trajectory converges to the

equilibrium point; (b) self-sustained oscillation for δ=0.9;
(c) oscillations for δ=1.51; (d) chaotic behaviour for δ=1.7

This strange behaviour can be no longer analyzed
by methods given in Refs. [10, 11] since the trajectory
depicted in Figure 2(d) has a broad band noise. There
are no methods to allow one in order to separate noise-
like solution from the output signal. The phase portrait
depicted in Figure 2(d) is a clear indication of double-
scroll chaotic type behaviour, observed in the study of
chaotic systems given in Ref. [1] with three state
variables.

Fig. 3  The error, e=x(t)0.1 - x(t)0.10001, between two
trajectories obtained for nearby initial conditions

of the system state

Figure 3 shows the error between two trajectories
initially almost unchanged within the time interval of
0<t<40, but it increases and gives raise to large error
in later times resulting in a loss of final state
predictability. The system output magnitude
approximately changes between ±2 as illustrated in
Figure 2(d). However the error between system
response of these two nearby initial conditions is larger
than the actual signal and it varies between ±4. This
phenomenon is known as sensitivity of the system
trajectory to the value of the initial conditions. The
results depicted in Figure 2(d) and Figure 3 are a clear
evidence of chaotic behaviour of the system in Eq. (2)
with a reasonable time delay.

5. BIFURCATION DIAGRAM

The error between two system trajectories depicted
in Figure 3 illustrates only the results for fixed system
parameters. However, the details of the system
responses to a range of a system parameter are
considerably important. One of the potential uses is to
avoid the chaotic regions by choosing appropriate
parameter setting. It is also interesting in some
situations, chaotic behaviours may needed. In order to
obtain both regions two methods, namely, Bifurcations
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diagrams and Lyapunov exponent are introduced [12].
The former is resembling the system trajectories versus
a system parameter in the periodically sampled
Poincare section. The latter is monitoring the system
trajectories versus system parameters and it indicates
the sensitivity of the trajectory in terms of state initial
condition [2].

Here the bifurcation diagram, which is a widely
used technique for examining the pre-chaotic or post-
chaotic changes in the system under parameter
variations, is obtained. The system has three
parameters: the gains of the linear and nonlinear parts
and the delay time. For the fixed delay time the system
behaviour qualitatively can be observed as a function
of the system parameters δ or ε. However, it has been
shown in Ref. [11] that by increasing the gain of the
nonlinear part, ε, actually it stabilizes the system and
does not effect the system behaviour qualitatively,
since it negatively feeds the system. In order to obtain
bifurcation diagram a Matlab program is developed
based on the procedure given in Ref. [12]. The system
parameter ε is also fixed at unity and the system
behaviour is observed by changing δ within the range
of 0.5≤δ≤1.78 with 0.2 step size. The system
trajectories of the system are obtained for the last part
of the simulation times of [0 20000] by eliminating
possible transient responses.

6. CONCLUSION

The dynamic behaviour of the simple continuous
nonlinear system given in Eq. (2) with delay element is
studied in this paper. It has been shown that the richness
of the system can not be observed by the approximation
methods. Interestingly, this system has been extensively
used as a model for engineering systems and its
dynamics has been studied, but the complexity of the
system behaviour has not been mentioned. Here the
chaotic behaviour of the system is shown and the
system bifurcation diagram is obtained in order to
illustrate the chaotic regions. The bifurcation diagram
shows that some system parameters do not only lead to
unstable response, but they also lead to chaotic
behaviours, which cause practical problems. Another
important result shows the limitation of input-output
stability [14]. The effective results presented here may
be considered as:
(1) A simple dynamical system with delay element can

exhibit very complex behaviour including chaos.
(2) The system presented in this paper can be used as a

prototype model for studying chaotic behaviours in
general.
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Fig. 4  Bifurcation diagram for the long term values of the
system output x versus the parameter δ

The system bifurcation diagram is depicted in
Figure 4, in which the maximum system output x is
plotted versus the selected range of parameters of δ.
Figure 4 illustrates the system trajectories initially
settled down at regular behaviours: a fixed point or a
self-sustained oscillations for δ<1. Increasing δ>1
leads to period two until the value of δ reaches 1.56
where a small chaotic region sets. For the range of
1.64<δ<1.8 the bifurcation diagram clearly indicates
the chaotic region. Further increase of δ  leads to
unbounded solutions, namely, unstable behaviour.
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JEDNOSTAVAN MODEL ZA PROUÈAVANJE KAOSA KOD NELINEARNIH SUSTAVA S
POVRATNOM VEZOM

SAŽETAK

Predlaže se nekoliko modela za poveæanje skupina nelinearnih fenomena. U ovom se èlanku predlaže jedan
jednostavan model za prouèavanje nelinearnih sustava s povratnom vezom. Model se sastoji od stanja, odgode
vremena i nelinearnog elementa. Može se opisati kao autonomna stalna diferencijalna jednadžba razlike vremena
koja ima samo jednu varijablu. Složenost takvog ponašanja sustava opisano je numerièki èime je moguæe prikazati
i kaotièno ponašanje. Time je omoguæen raèunalom generiran kaos za dvostruko klizajuæi atraktor i dijagram
bifurkacije.
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