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SUMMARY
The classical problem of two solitons with different amplitudes moving along the same direction is reinvestigated

in this paper. The well-known solution, which has been investigated by many studies, is that, after the interaction,
the two solitons will gradually regain their original forms with the phase shifts respectively. Besides two regimes
which classify the collision types according to the number of peaks while interaction occurs strongly, we present the
third regime for describing the interaction more exactly and completely.
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1. INTRODUCTION

In 1895, Korteweg and de Vries [1] derived a
classical and important equation, i.e. the so-called KdV
equation, for describing the nonlinear waves
propagating along the same direction. Among the wave
motions governed by the KdV equation, the interaction
of two unidirectional solitons is most frequently
investigated not only in physics, but in coastal
engineering. This problem was first numerically solved
by Zabusky and Kruskal [2] who concluded that the
two solitons after collision will gradually recover their
original wave forms respectively except for a forward
phase shift for the larger (faster) soliton and a backward
phase shift for the smaller (slower) one. Gardner et al.
[3] provided an analytical method to solve the initial-
value problem of the KdV equation, especially for the
case of soliton motions. Hirota [4] also gave the exact

solution of the KdV equation for multiple-soliton
collisions and his results were discussed in detail by
Whitham [5]. More recently, Wu and Zhang [6]
elucidated the transient rates of mass and energy
transfer between two unidirectional solitons throughout
their overtaking interaction. They also analytically
determined the criterion separating the single-peak and
double-peak regimes which was also noted by many
researchers, for example, Zabusky and Kruskal.

In our present study, we will stress on the number
of peaks of the entire wave form while strong
interaction occurs. Based on the transform method
derived by Hirota, we found that, for describing the
peak number precisely, three regimes, which include
the 2-peak, the 2-1-2-peak and the 2-1-2-1-2-peak
regimes, are necessary to classify the collision types.
This classification is different from that concluded by
most previous investigations.
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2. MATHEMATICAL FORMULATION

We start our reinvestigation with the KdV equation:

t x xxx6 0η ηη η+ + = (1)
The well-known solution of Eq. (1), the sech2 type

soliton, can be obtained by introducing the following
logarithmic transform:
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Inserting Eq. (2) into Eq. (1) yields a nonlinear
differential equation:
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The solution of Eq. (3) was first found by Hirota and
takes a concise form F=1+exp(ς ) where ς =ax−a3t+θ.
Obviously, this solution exactly describes a single
soliton propagating along the positive x-axis. Hirota also
derived the solution for the case of unidirectional
multisolitons. The enhanced form of F for the case of N
solitons is as follows:
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where 0,1µ=∑  indicates the summation over all
possible combinations of µ1=0,1, µ2=0,1, ..., µN=0,1

and N
j k>∑  means the summation over all possible

combinations of N elements under the condition j>k.
Since our goal is to analyze the two-soliton behaviors,
one can simplify and rewrite Eq. (4) as:
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where a1>a2 is assumed. The values of ai2/2, ai2 and θi
indicate the wave amplitude, the wave speed and the
initial phase of the i-th soliton without any interactions
with other solitons, respectively. For convenient
descriptions of real wave properties, we denote the
original amplitude of the i-th soliton by αi which is equal
to ai2/2. According to Eq. (7), the position of the peak
of each soliton before and after the interaction is at:
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and:
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Equations (8) and (9) imply that, after the larger

soliton overtakes the smaller one, the phase of the larger
soliton will be pushed forward and the smaller soliton
will have a phase lag. Since the phase shifts after
interaction have been solved, assigning the suitable
values to θ1 and θ2 is crucial to observe the variation
of the wave profile theoretically. Therefore, we choose:
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in order to make the wave profile a fore-and-aft
symmetry with respect to x=0 and t=0, namely,
η(x,t)=η(-x,-t). Thus, the wave profile is readily
obtained by inserting all components of F into Eq. (2).
The result is:
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3. DISCUSSIONS OF THE COLLISION
TYPES

In this section, we focus on the evolution of the
wave profile and the collision types. Since we have
chosen suitable values of initial phases to make the
wave motion symmetrical with respect to x=t=0, the
elevation at x=0 and t=0, namely at the center plane,
will be first examined. The elevation at the center plane
can be directly obtained by setting both x and t in Eq.
(11) to be zero and the result is:

( ) 1 2x 0, t 0η α α= = = − (12)
Equation (12) implies that a run-down phenomenon

takes place more obviously as the wave amplitudes of
solitons are much closer to each other. Besides the run-
down phenomenon occurs at the center plane, it is of
interest to observe the number of peaks during the
duration of the strong interaction. By differentiating
Eq. (11) twice with respect to x, it gives:

( ) ( ) ( )xx 1 2 1 2x 0, t 0 3η α α α α= = = − − ⋅ − (13)
Equation (13) infers the concavity of the wave

profile at the strongest interaction point. The negative
value of Eq. (13), which leads the profile to maintain a
single-peak status, will happen under the condition
0<1/3<R. It means that the larger soliton will merge
the smaller soliton to a single soliton at t=0. On the
other side, for the positive value of Eq. (13), i.e. under
the condition of 1/3<R<1, the wave profile will
maintain two peaks at t=0. That is to say that the larger
and the smaller solitons will gradually shrink and grow
respectively and the amplitudes finally become identical
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at t=0. Naturally, the case of R=1/3 indicates the critical
status between the single-peak and the double-peak
regimes at t=0. Up to now, this consequence is deemed
an important principle to classify the collision types
into two regimes. The wave profiles with various
amplitude ratios R(=α2/α1) at t=0 are plotted in Figure
1. It is noted again that the above result is obtained
merely for a specific time, t=0. In other words, the
further investigation is still needed to determine whether
the classification can be applied to the whole duration
of interaction or not.

Fig. 1  The wave profiles at t=0 with different amplitude ratios
(α1=0.1)

Therefore, we start to observe the wave profile at
the interval which is close to t=0. Consider the
following equation:
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The left side of Eq. (14) is the numerator of the
differentiation of Eq. (11) with respect to x. The
number of solutions of Eq. (14) will determine the
number of wave peaks. Since F is a function of x and
t, we can solve Eq. (14) numerically for any specific
time to obtain the number of solutions. Three solutions
and one solution of Eq. (14) indicate the wave profiles
with two peaks and one peak respectively. Certainly,
the critical case occurs while there exist two solutions.
Figure 2 shows that, by taking the number of solutions
into account, the collision types are then divided into
three regimes which are slightly different from the
conclusion shown in Figure 1 that there are only two
regimes at t=0. The shadow and the white areas
indicate the single-peak and the two-peak states
respectively. As the amplitude ratio is smaller than 1/3,
the larger soliton will gradually catch up with the
smaller one and merge to a single soliton during the
strongest interaction. The smaller amplitude ratio leads

to the longer duration of the single peak status. This
regime is named the 2-1-2-peak regime. As R>0.383,
the wave profile always keeps a two-peak status
throughout the collision. This is so-called the 2-peak
regime. The third regime, to author’s best knowledge,
which has never been pointed out, will appear under
the condition 1/3<R<0.383. This regime is the 2-1-2-
1-2-peak regime that the single peak status emerges
twice throughout the interaction. Actually, if one
observes the center plane shown in Figure 2, the result
will be completely the same as that of Figure 1, namely
it needs two regimes to classify the collision types.

Fig. 2  Three regimes for classifying the collision types

Figures 3, 4 and 5 show the evolutions of these
three regimes with the amplitude ratio 0.2, 0.35 and
0.5, respectively.

Fig. 3  The wave evolution of the 2-1-2-peak regime (R=0.2)
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DOPRINOS RAZVOJU PREKLAPANJA VELIKIH VALOVA

SA@ETAK

Ovaj ~lanak nastavlja istra`ivanje klasi~nog problema dvaju velikih valova razli~itih amplituda koji se kre}u u
istom smjeru. Dobro poznato rješenje a koje je analizirano u mnogim studijama, je da }e nakon interakcije, ta dva
velika vala postepeno poprimati izvorne oblike s faznim pomakom. Osim dva re`ima koji klasificiraju vrste sudara
prema broju vrhova pri izra`enoj interakciji, pretpostavljamo i tre}i re`im za to~nije i potpunije opisivanje te
interakcija.

Klju~ne rije~i: preklapanje, problem dva velika vala, sudar velikih valova, obalno in`enjerstvo, KdV jednad`ba,
vršni re`imi.

Fig. 5  The wave evolution of the 2-peak regime (R=0.5)

Fig. 4  The wave evolution of the 2-1-2-1-2-peak regime
(R=0.35)

4. CONCLUDING REMARKS

We reinvestigate the classical overtaking collision
of two solitons moving along the same direction. The
well-known physical phenomenon is that the larger
soliton will overtake the smaller one and two solitons
will eventually recover their original wave forms. In
the most previous studies, the evolution of the wave
profile was classified into two regimes according to
the number of peaks at t=0. Though it is correct at that
point, however, a more detailed classification is
provided in our present study. Observing the wave
evolution at the neighbouring time interval of t=0, one
needs three regimes, which include the 2-peak, 2-1-2-
peak and 2-1-2-1-2-peak regimes, to precisely classify
the collision types. The critical amplitude ratios
between these regimes are 1/3 and 0.383.
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