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SUMMARY
Modelling of mass in vibration analysis of thin-walled structures using the finite element method has been

considered, i.e. consistent and lumped mass matrices have been compared to a newly introduced, simplified mass
matrix. The matrices have been specified for a two-noded beam element, three-noded triangular plate element and
four-noded rectangular plate element. The simplified mass matrix has been derived on the basis of bar and membrane
shape functions instead of the bending ones. As a result, the distributed mass has been considered only to the
deflectional degree of freedom. Accuracy and advantage of such a mass matrix formulation is illustrated for the
cases of beam and square plate vibrations.
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1. INTRODUCTION

The finite element method presents a very efficient
tool for structural analysis of engineering structures [1,
2]. Vibration of thin-walled structures involves dealing
with stiffness matrix, mass matrix and damping matrix.
In order to couple in-plane and flexural vibrations, the
shell finite elements comprising the membrane and plate
properties have been used. The plate stiffness is based
on the shape functions related to both deflection and
rotations of the element nodes. The same shape functions
are used for determining the consistent structural mass
matrix. Non-structural mass (for instance, equipment
and cargo mass in ships) is mainly considered as lumped
mass that results in a diagonal mass matrix. Sometimes,
due to simplicity, the structural mass is also discretized.

Error of structural frequencies of axial rod vibrations
determined by consistent and lumped mass matrices are
approximately equal and opposite. As a result, the mass
matrix computed from the average of these two
matrices reduces the error, as elaborated in Ref. [3]. A
superior behaviour of the averaged consistent and

lumped mass matrix is also found for natural vibrations
of simply supported beam [3, 4]. However, in the case
of a free beam, the error due to application of the lumped
mass matrix is much higher than that of the consistent
mass matrix. Therefore, the concept of the averaged
mass matrix cannot be used as a rule, since the error
depends on the boundary conditions. In order to increase
accuracy, special lumping technique has been elaborated
in Ref. [5], where total mass has been lumped to the
translational degree of freedom (d.o.f.) proportionally
to the diagonal entries of the consistent mass.

Inertia forces and moments of a dynamic system
are actually internal loads. Kinetic energy of the forces
is dominant, compared to that of the moments.
Therefore, as the third physically based option, the
mass matrix for flexural vibrations can be determined
by employing the shape functions of the in-plane
displacements for the plate deflection, while the mass
moment of inertia can be distributed per rotational d.o.f.
as lumped quantities. The simplified mass matrix based
on this approach has been derived for ordinary beam
and plate finite elements.
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2. BEAM FINITE ELEMENT

Natural vibrations of a dynamic system are obtained
by solving the eigenvalue problem:

( )2 0ω− =K M δ , (1)

where K is the global stiffness matrix, M is the global
mass matrix, δδδδδ represents the nodal displacement
vector and ω is the natural frequency.

The finite element stiffness matrix of the beam and
the consistent mass matrix are derived with the shape
functions in the form of the third order (Hermitian)
polynomials [6]:
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where ξ=ξ/l and l is the element length. The stiffness
matrix reads:
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where EI is the bending stiffness.
The consistent mass matrix is obtained according

to the definition:
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(4)
where m is mass per unit length.

The lumped mass matrix reads:

2

1 0 0 0
0 0 0 0ml
0 0 1 02
0 0 0 0

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

m . (5)

For diagonal angular terms in Eq. (5), very small
positive values have to be assumed in order to ensure a
positive definite matrix as a prerogative for successful
computing.

The simplified mass matrix for deflection d.o.f. is
derived with the linear shape functions used for bar
tension:

N 1 , 0, , 0ξ ξ= − . (6)
Hence, one finds:

d
3

2 0 1 0
0 0 0 0ml
1 0 2 06
0 0 0 0

⎡ ⎤
⎢ ⎥
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⎢ ⎥
⎢ ⎥
⎣ ⎦

m . (7)

The linear shape functions imply rigid body motion
with constant rotational angle. The element mass
moment of inertia reads J=ml3/12 and one half is
assigned to each rotational d.o.f. In that way 3

dm  is
extended to:

2

3
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17.5l 0 0ml
140 0420

Sym. 17.5l
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m . (8)

Matrix m3 can be compared with m1, Eqs. (8) and
(4), respectively.

3. TRIANGULAR PLATE ELEMENT

Triangular plate element with 9 d.o.f. is considered
in the Cartesian coordinate system, Figure 1. The shape
functions are the third order polynomials of a quite
complex form. As a result, the stiffness and mass

matrices are of very complex form, too, [7].
Fig. 1  Triangular plate element

In order to simplify the mass matrix, the shape
functions of membrane displacements are employed
for deflection [1]:
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(9)

where A is the element area and:

1 2 3 3 2 2 3 1 1 3 3 1 2 2 1

ij i j ij i j

x y x y , x y x y , x y x y
x x x ,  y y y , i, j 1,2,3
α α α= − = − = −

= − = − =

(10)
According to definition, the simplified mass matrix

for deflection takes the following form:
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where m is mass per unit area. In order to make
analytical integration in Eq. (11) possible, the Cartesian
coordinates are expressed with triangular ones [8], see
Figure 2:

1 21 32

1 21 32

x x x x
y y y y

ξ ξη
ξ ξη

= + +
= + + (12)

where 0≤ξ≤1 and 0≤η≤1. In this case the shape
functions (9) read:

( )1 2 3N 1 ,  N 1 ,  Nξ ξ η ξη= − = − = . (13)
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, (18)

the integrand functions in Ix and Iy, Eqs. (17) and (18),
consist of terms which can be integrated by the general
formula:

( )
dpm n
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+ + +∫ (19)

that leads to:
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if r+s=2. Thus:
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∗ ∗ ∗
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The mass moments of inertia can be spread to the
nodes in an approximate way, proportionally to the
square of node coordinates. Finally, the complete
simplified mass matrix is obtained by extending 3

dm ,
Eq. (16), to all d.o.f.:
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(22)
The lumped mass matrix is diagonal and quite

simple:

2

1
0

0
1

mA 0
3

0
1

0
0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥=
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⎢ ⎥
⎣ ⎦

m (23)

Fig. 2  Triangular coordinates

Furthermore:
dA Jd dξ η= , (14)

where:

x x

J 2A
y y
ξ η

ξ

ξ η

∂ ∂
∂ ∂

= =
∂ ∂
∂ ∂

(15)

is Jacobian. Hence, the simplified mass matrix for
deflection, Eq. (11), yields:

d
3

2 1 1
mA 2 1
12

Sym. 2

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

m (16)

The mass moments of inertia of the complete finite
element around x and y axis of the local coordinate
system, with origin located at the centroid of the
triangle, read:

2 2
x yI m y dA,     I m x dA∗ ∗= =∫ ∫ . (17)

For solving the above integrals it is convenient to
use the area coordinates ξ1, ξ2 and ξ3 [1]. By
employing the transformation relationship:
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4. RECTANGULAR PLATE ELEMENT

Instead of consistent shape functions for plate bending, those for membrane in-plane displacements can be used
for deflection [1]:

( )( )i i i
1N 1 1 , i 1,2,3,4
4

ξ ξ η η= + + = , (24)

where x
a

ξ =  and 
y
b

η = , Figure 3. For integrals of the shape functions in the mass matrix one finds:

i j i j i j
A

mA 1 1m N N dA 1 1
16 3 3

ξ ξ ηη⎛ ⎞⎛ ⎞= + +⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠∫ . (25)

As a result, the simplified mass matrix for deflection yields:

d
3

4 2 1 2
4 2 1mA

4 236
Sym. 4

⎡ ⎤
⎢ ⎥
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m . (26)

The mass moments of inertia of the complete element around x and y axes read:

2 2
x y

mA mAI b ,     I a
3 3

= = (27)

and they are lumped to four nodes. Hence, the complete simplified mass matrix takes form:

Fig. 3  Rectangular plate element
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On the other side the lumped mass matrix reads:
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5. SHELL FINITE ELEMENTS

Simple shell element is constituted of membrane and plate elements. Consistent mass matrix for triangular
membrane element is determined with linear shape functions (9) and reads:

m

2 0 1 0 1 0
2 0 1 0 1

2 0 1 0mA
2 0 112

2 0
Sym. 2

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

m . (30)

The node displacement vector of triangular shell element is:
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w
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δ ϕ

ϕ

⎧ ⎫
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⎪ ⎪⎧ ⎫ ⎪ ⎪⎪ ⎪ ⎪ ⎪= =⎨ ⎬ ⎨ ⎬

⎪ ⎪ ⎪ ⎪
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⎪ ⎪⎩ ⎭

δ δ , (31)

where ϕzi is so called dummy d.o.f. without stiffness. However, it has mass moment of inertia 2
i

mA r
12

∗ ,

2 2 2
i i ir x y∗ ∗ ∗= + . The shell mass matrix is comprised of the rearranged terms of matrices m3 and mm, Eqs. (22) and

(30), according to the displacement vector δδδδδ:
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. (32)

In similar way, mass matrix of the rectangular shell element can be constructed by comprising the membrane
mass matrix for displacements ui and vi [6]:
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m
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m , (33)

and the plate mass matrix m3, Eq. (28), for displacements wi, ϕxi and ϕyi, extended to ϕzi. In that way the complete
simplified mass matrix yields:

( )
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(34)

6. ILLUSTRATIVE EXAMPLES

6.1. Beam vibrations

The application of different mass modelling and the
resulting accuracy has been illustrated for the case of
natural beam vibrations with the following parameters:

Length L = 40 m
Breadth B = 2 m
Height H = 1 m
Cross-section area A = 2 m2

Moment of inertia of cross-section I=0.1667 m4

Mass M = 6.28×105 kg
Young’s modulus E = 2.1×1011 N/m2

The analytical values of natural frequencies for a
free beam are determined by the following formula:

( )
( )

2
n

n 2
l / 2 EI

ml / 2

β
ω = , (35)

where the roots for the symmetric and antisymmetric
elastic modes with odd and even indeces respectively,
read 1l / 2 2.365β = , 2l / 2 3.925β = , 3l / 2 5.497β = ,
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4l / 2 7.068β = . They are obtained from the
corresponding frequency equations:

n n n nl l l lcosh sin sinh cos 0
2 2 2 2
β β β β⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞± =⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠
(36)

The problem has been analyzed in the Cartesian
coordinate system with origin in the middle of beam.

Natural modes of simply supported beam are
sinusoidal and natural frequencies read:

2
4n

n EI ,     n 1,2...
l m
πω ⎛ ⎞= =⎜ ⎟

⎝ ⎠
(37)

It is interesting that natural frequencies for the
clamped beam are the same as those for the free one,
Eq. (34), but the mode shapes are different.

Numerical calculation of flexural beam vibrations
has been performed for different boundary conditions,
i.e. for the cases of free, simply supported and clamped
beams. The beam has been divided into 8 and 16 finite
elements in order to check the convergence of the
results. The obtained natural frequencies for the
consistent, lumped and simplified mass matrices are
listed in Tables 1 to 6 and compared with analytical
solutions. As expected, the consistent mass matrix gives
the best results in all considered cases. The lumped
mass matrix induces very large discrepancies for the
free beam, while for the simply supported and clamped
beam the results are, surprisingly, as good as those
obtained with the consistent mass matrix.
Discrepancies due to the application of the simplified
mass matrix are medium and stable in all cases.

Table 1 Natural frequencies of free beam ωi [Hz], 8 finite elements

Discrepancy δ (% ) 
M ode 

no. Analytical 
Consistent 

mass 

m1 

Lumped 
mass 

m2 

Simplified 
mass 

m3 
δ1 δ2 δ3 

1  3.323 3.323 3.171 3.267 0.00 -4.79 -1.71 

2 9.151 9.165 8.481 8.996 0.15 -7.90 -1.72 

3 17.951 17.994  16.180 17.615 0.24 -10.95 -1.91 

4 29.678 29.841 26.079 28.779 0.55 -13.80 -3.12 

Table 2 Natural frequencies of free beam ωi [Hz], 16 finite elements

Discrepancy δ (%) 
M ode 

no. Analytical  
Consistent 

mass 

m1 

Lumped 
mass 

m2 

Simplified 
mass 

m3 
δ1 δ2 δ3 

1 3.323 3.323 3.283 3.309 0.00 -1.22 -0.42 

2 9.151 9.160 8.977 9.130 0.10 -1.71 -0.23 

3 17.951 17.959 17.459 17.957 0.04 -2.82 0.03 

4 29.678 29.695 28.634 29.829 0.06 -3.65 0.51 

Discrepancy δ  (%) 
M ode 

no. Ana lytical 
Consistent 

mass 

m1 

Lumped 
mass 

m2 

Simplified 
mass 

m3 
δ1 δ2 δ3 

1  1.464 1 .466 1.466 1.475 0 .136 0.136 0.75 

2  5.857 5 .865 5.862 6.002 0 .136 0.085 2.42 

3  13.179 13.209 13.16 8 13.811 0 .227 -0.084 4.58 

4  23.430 23.546 23.28 3 24.981 0 .493 -0.631 6.21 

Table 3 Natural frequencies of simply supported beam ωi [Hz], 8 finite elements

Table 4 Natural frequencies of simply supported beam ωi [Hz], 16 finite elements

Discrepancy δ  (%) 
M ode 

no. Ana lytical 
Consistent 

mass 

m1 

Lumped 
mass 

m2 

Simplified 
mass 

m3 
δ1 δ2 δ3 

1  1.464 1.466 1.466 1.468 0.136 0.136 0.27 

2 5.857 5.863 5.863 5.900 0.102 0.102 0.73 

3 13.179 13.194 13.19 1 13.375 0.114 0.091 1.47 

4 23.430 23.459 23.44 6 24.009 0.124 0.068 2.41 
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Table 5 Natural frequencies of clamped beam ωi [Hz], 8 finite elements

Discrepancy δ (%) 
M ode 

no. Analytical  
Consistent 

mass 

m1 

Lumped 
mass 

m2 

Simplified 
mass 

m3 
δ1 δ2 δ3 

1  3.323 3 .323 3.323 3.347 0.00 0.00 0.72 

2  9.151 9 .165 9.143 9.383 0.15 -0.09 2.47 

3  17.951 17.999 17.863 18.736 0.27 -0.49 4.19 

4  29.678 29.868 29.142 31.295 0.64 -1.84 5.17 

Table 6 Natural frequencies of clamped beam ωi [Hz], 16 finite elements

Discrepancy δ (%) 
M ode 

no. Analytical 
Consistent 

mass 

m1 

Lumped 
mass 

m2 

Simplified 
mass 

m3 
δ1 δ2 δ3 

1 3.323 3.323 3.323 3.329 0.00 0.00 0.18 

2 9.151 9.160 9.159 9.225 0.10 0.09 0.80 

3 17.951 17.959 17.953 18.222 0.04 0.01 1.49 

4 29.678 29.695 29.666 30.407 0.06 -0.04 2.40 

6.2. Plate vibrations

Let us consider vibrations of a simply supported
rectangular plate, since this case of boundary
conditions usually appears in practise and there is a
relatively simple analytical solution for natural
frequencies [9]:

2 2
2

kl
D k l
m a b

ω π
⎡ ⎤⎛ ⎞ ⎛ ⎞= +⎢ ⎥⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

, (38)

where:

( )
3

2
EtD

12 1 ν
=

−
(39)

is the plate stiffness, a and b are the plate length and
width respectively, m is the mass per unit area, and t is
the plate thickness.

Natural frequencies for square plate of the following
parameters have been analyzed: a = b = 2 m, t = 0.01
m, and m = 78.5 kg/m2. The plate has been modelled
with 8×8=64 rectangular elements with four corner
nodes with compatible deflections [9]. The natural

frequencies determined with consistent, lumped and
simplified mass matrices are listed in Table 7. The
eigenvalue problem has been solved using the standard
routine for eigenvalues in MATLAB software [10].

It is obvious that all numerical results are
underestimated. Frequencies determined with the
simplified mass matrix are closer to the analytical
solution than those determined using the lumped mass
matrix. As a result of the applied numerical method, in
all numerical solutions there has been a small difference
between natural frequencies ω21 and ω12 .

In commercial computer programs, more
sophisticated finite elements containing consistent,
lumped and coupled mass matrices are used. For
illustration, natural frequencies of the considered square
plate with the same mesh density are determined with
SESAM [11] and NASTRAN [12]. The obtained results
are presented in Tables 8 and 9, respectively.
Discrepancies for SESAM solution using the consistent
mass matrix are low and uniformly increased with
modes. That is not the case for the lumped mass
matrix. NASTRAN results are overestimated and
underestimated for the coupled and lumped mass
matrices, respectively.

Discrepancy δ  (%) 
M ode 

no. Ana lytical 
Consistent  

mass 

m1 

Lumped 
mass 

m2 

Simplified 
mass 

m3 
δ1 δ2 δ3 

1,1 12.287 11.994 10.89 6 11.366 -2.38 -11.32 -7.49 

1,2 30.717 28.913 27.87 0 29.937 -5.87 -9.26 -2.54 

2,1 30.717 29.727 28.92 0 31.160 -3.22 -5.85 1.44 

2,2 49.147 45.780 42.43 6 44.715 -6.85 -13.65 -9.02 

Table 7 Natural frequencies of simply supported square plate, ωkl [Hz], 64 elements
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Table 9 Natural frequencies of simply supported square plate,
NASTRAN, ωkl [Hz], 64 elements

Discrepancy δ (%) Mode 
no. 

Consisten
t mass 

Lumped 
mass δ1 δ2 

1,1 12.122 12.155 -1.34 -1.07 

1,2 30.088 28.348 -2.04 -7.71 

2,1 30.088 31.099 -2.04 1.24 

2,2 46.705 42.929 -4.97 -12.65 

Discrepancy δ (%) M ode 
no. 

Consisten
t mass 

Lumped 
mass δ1 δ2 

1,1 12.374 12.060 0.71 2.55 

1,2 31.970 29.982 4.08 -2.39 

2,1 31.970 29.982 4.08 -2.39 

2,2 51.377 46.361 4.54 -5.67 

Table 8 Natural frequencies of simply supported square plate,
SESAM, ωkl [Hz], 64 elements

7. CONCLUSION

In order to simplify the mass matrix formulation
and reduce computing time, simplified mass matrices
for beam and rectangular finite elements, applied in the
modelling of thin-walled structures, have been derived.
Shape functions for bar and membrane have been used
for the deflection of beam and plate so that the
distributed mass is reduced to the deflectional degree
of freedom. In this way, the mass matrix for shell
elements has been obtained in quite a simple form with
the same type of elements for all translational degrees
of freedom. The numerical examples of beam and
square plate vibrations have shown satisfactory
accuracy.
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MODELIRANJE MASE METODOM KONA^NIH ELEMENATA U ANALIZI VIBRACIJA
TANKOSTIJENIH KONSTRUKCIJA

SA@ETAK

U ovome se radu razmatra modeliranje mase pomo}u metode kona~nih elemenata u analizi vibracija tankostijenih
konstrukcija, odnosno, uspore|uju se prednosti i nedostaci korištenja konzistentne i koncentrirane matrice mase u
odnosu na novopredlo`enu, pojednostavljenu matricu mase. Matrice su odre|ene za dvo~vorni gredni element,
tro~vorni trokutasti plo~asti element i ~etvero~vorni pravokutni plo~asti element. Pojednostavljena matrica mase
dobivena je na temelju oblikovnih funkcija za štap i membranu umjesto na temelju oblikovnih funkcija za savijanje.
Stoga su raspodijeljene mase razmatrane samo za slu~aj stupnjeva slobode pomaka. To~nost i prednosti takve vrste
formulacije matrice mase su pokazane na slu~ajevima vibracije greda i kvadratnih plo~a.

Klju~ne rije~i: tankostijene konstrukcije, vibracije, modeliranje mase, metoda kona~nih elemenata.


