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SUMMARY
Basic equations of in-plane plate vibrations are specified. Governing differential equations of motion are solved

analytically introducing displacement potentials and employing the method of separation of variables. Frequency
equations for a rectangular plate with two opposite simply supported edges and two remaining edges clamped, free
and combined clamped-free are derived. Three types of solutions are possible, depending on values of involved
function arguments. For the purpose of vibration analysis of a circular plate, differential equations of motion of a
rectangular plate are transformed. Concerning a circular plate, circumferential variation of displacement potentials
is assumed in the form of trigonometric series, while variation in radial direction is obtained by solving Bessel’s
differential equations. Frequency equations for clamped and free plate edges are given, and the same procedure is
applied for the annular plate. Application of the developed theory is illustrated in cases of a rectangular plate
simply supported at two opposite edges, clamped, free and combined clamped-free at two remained edges. Vibrations
of clamped and free circular plates are also analyzed as well as of a clamped-free annular plate. In all the considered
cases, analytical values are compared with FEM results.
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1. INTRODUCTION

Flexural vibrations of thin and thick rectangular and
circular plates are of great practical importance since
their transverse motion can be easily excited by external
sources. Hence, there is an extensive body of literature
related to free flexural vibrations of these structural
elements. On the other side, relevant literature on in-
plane plate vibrations is rather scarce since natural
frequencies take much higher values than the ordinary
excitation frequencies so that resonant response is
realized quite rarely. However, in-plane vibrations can
be, for instance, excited in a ship's hull plating, reducing
thus the stability of plates exposed to in-plane load due
to bending of the ship's hull in waves. Another practical
example is in-plane vibration of a rotating disk in
mechanical systems, which can be caused by
imperfections in shaft alignment, etc.

One of the first works on this subject was presented
by Lord Rayleigh [1] for cases of simply supported plates.
A valuable survey of the relevant literature until 1996 is
given in Ref. [2], where in-plane natural frequencies for
rectangular plates are calculated using the Rayleigh–Ritz
method. The superposition method, in order to obtain an
analytical solution for rectangular plate vibrations, for free
boundaries, clamped boundaries and elastically supported
edges, is used in Refs. [3] and [4]. Problem regarding
elastically restrained edges is also analyzed in Ref. [5] by
employing double Fourier series and four complementary
functions. The exact solution for in-plane vibrations of a
rectangular plate with two simply supported opposite
edges and two remaining edges being both clamped or
both free is presented in Ref. [6].

Recent research of in-plane vibrations of
rectangular plates, where method of separation of
variables is applied, is presented in Refs. [7] and [8].
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Using such an approach the exact solutions for simply
supported boundaries at two opposite edges have been
achieved. It has been shown that two types of simply
supported boundaries are possible. In-plane plate
vibrations deal with two orthogonal displacements, two
normal stresses and two equal shear stresses. At
boundaries of a rectangular plate 8 conditions can be
satisfied, i.e. two per each edge. However, the solution
in Ref. [7] is expressed with two x and two y
functions, each with four homogenous solutions,
resulting in total of 16 integration constants. In order
to enable satisfaction of the boundary conditions, their
number is further reduced to 8.

A short review of the in-plane plate vibrations is
presented in Ref. [9], starting from Love’s book [10]
as an initial approach to the current problems. In-plane
vibrations of circular and annular plates with free
boundaries are analyzed in Ref. [11]. Natural
frequencies for the in-plane vibrations of annular plates
with four combinations of free and clamped boundary
conditions at the inner and outer edges are calculated
in Ref. [12] employing a transfer matrix procedure.
Natural in-plane vibrations of circular plates assuming
mode shapes in circumferential and radial direction are
analyzed in Ref. [13] by trigonometric and Bessel
functions, respectively. Since no paper dealing with an
exact frequency equation for in-plane plate vibration
of a clamped plate had been published at the time, that
problem has recently been solved in Ref. [9], with the
introduction of displacement potential functions.

Based on the aforementioned circumstances,
potential function approach is generalized in this paper
and used for both rectangular and circular plate
vibration analysis. A method of the separation of
variables is applied and a general solution of governing
differential equations of motion with 8 integration
constants, as number of possible boundary conditions
for a rectangular plate, is directly obtained. Analytical
solutions for plates with two simply supported opposite
edges and any combination of boundary conditions at
the remaining two edges are proposed. The same
approach is used for in-plane vibrations of circular
plates. Differential equations of motion derived for
rectangular plates are transformed from orthogonal to
polar coordinate system. Potential variation in
circumferential direction is assumed by trigonometric
functions and variation in radial direction is obtained in
the form of the Bessel functions. The solution enables
determination of frequency equation for any boundary
value problem specified for an inner and outer edge.
The application of the proposed procedure is illustrated
for clamped, free and combined boundary conditions
for rectangular and circular plates. The results are
validated by a FEM analysis.

2. BASIC EQUATIONS OF IN-PLANE
VIBRATIONS

A rectangular plate in the Cartesian coordinate
system is considered with an aspect ratio a/b and a
thickness h, see Figure 1. Longitudinal and transversal
displacements are harmonic, i.e. u(x,y,t) = U(x,y) sinωt
and v(x,y,t) = V(x,y) sinωt, where ω is a natural
frequency. Amplitudes of membrane stresses [14]
read:

x 2

y 2

xy

E U V ,
x y1

E V U ,
y x1

U VG ,
y x

σ ν
ν

σ ν
ν

σ

⎛ ⎞∂ ∂
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where E is Young’s modulus, G shear modulus and ν
Poisson’s ratio. Based on equilibrium of internal and
inertia forces in x and y direction, i.e.:

xy 2x

y xy 2

U 0,
x y
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σσ
ρω

σ σ
ρω

∂∂
+ + =

∂ ∂
∂ ∂

+ + =
∂ ∂
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system of two partial differential equations, [7], is
obtained:

( ) ( ) ( )

( ) ( ) ( )

2 2 2
2 2

2 2

2 2 2
2 2

2 2

U 1 U 1 V1 1 1 U 0,
2 2 x y Ex y
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ρν ν ν ω
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∂ ∂ ∂
+ − + + + − =
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∂ ∂ ∂
+ − + + + − =

∂ ∂∂ ∂

(3)

Fig. 1  Rectangular plate for in-plane vibrations
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3. POTENTIAL THEORY OF PLATE
VIBRATIONS

Direct solution to Eqs. (3) is rather complex and
results in twice the number of integration constants,
compared to available number of boundary conditions
[7]. Therefore, displacement potential functions Φ(x,y)
and Ψ(x,y) are introduced according to Helmholtz, [15]
and [16]:

U , V .
x y y x
Φ Ψ Φ Ψ∂ ∂ ∂ ∂

= + = −
∂ ∂ ∂ ∂

(4)

Substitution of Eq. (4) into Eq. (3) yields:
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3 3
* 2
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2
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yx y y

E
yx y y
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Φ Ψ Φρω

Ψ Ψ Ψρω

Φ Ψ Φρω

Ψ Ψ Ψρω

⎛ ⎞∂ ∂ ∂
+ + +⎜ ⎟⎜ ⎟ ∂∂ ∂ ∂⎝ ⎠
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⎛ ⎞∂ ∂ ∂
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(5)

where ( )* 2E E 1 ν= − . If Eqs. (5) are derivated once
per x and y respectively, summed up, and derivated
once again per y and x, respectively, and subtracted,
one arrives at:

* 2 2E 0, G 0.Φ ρω Φ Ψ ρω Ψ∆ + = ∆ + = (6)
In that way coupled Eqs. (3) are decomposed into

two independent equations.
The variable separation method can be used

to solve Eqs. (6), i.e. Φ(x,y) = X(x) ⋅ Y(y) and
Ψ(x,y) = Z(x) ⋅ W(y). Insertion of potential functions
into Eq. (6) yields:

2 2 2

2 2 *

2 2 2

2 2

1 d X 1 d Y 0,
X Ydx dx E
1 d Z 1 d W 0.
Z W Gdx dy

ρω

ρω

+ + =

+ + =

(7)

Furthermore, the solutions of the unknown
functions can be assumed in an exponential form, i.e.
X=Aeiαx, Y=Ceiγy, Z=Beiβx and W=Deiϑy. That leads
to characteristic equations:

2 2 2 2 2 2
* 0, 0

GE
ρ ρα γ ω β ϑ ω+ − = + − = (8)

from which one can write:

2 2 2 2
1,2 1,2* *

2 2 2 2
1,2 1,2

, ,
E E

, .
G G

ρ ρα ω γ γ ω α

ρ ρβ ω ϑ ϑ ω β

= ± − = ± −

= ± − = ± −

(9)

The assumed functions take the following form:

( )
( )
( )
( )

1 2

1 2

1 2

1 2

X x A cos x A sin x,

Y y C cos y C sin y,

Z x B cos x B sin x,

W y D cos y D sin y.

α α

γ γ

β β

ϑ ϑ

= +

= +

= +

= +

(10)

Now, displacements, Eq. (4), read:

dX dW dY dZU Y Z , V X W .
dx dy dy dx

= + = − (11)

Stresses, Eq. (1), can also be expressed with
separated functions:

( )

( )

2 2
*

x 2 2

2 2
*

y 2 2

2 2

xy 2 2

d X d Y dZ dWE Y X 1 ,
dx dydx dy

d Y d X dZ dWE X Y 1 ,
dx dydy dx

dX dY d W d ZG 2 Z W .
dx dy dy dx

σ ν ν

σ ν ν

σ

⎛ ⎞
= + + −⎜ ⎟⎜ ⎟

⎝ ⎠
⎛ ⎞

= + − −⎜ ⎟⎜ ⎟
⎝ ⎠
⎛ ⎞

= + −⎜ ⎟⎜ ⎟
⎝ ⎠

(12)

A general solution of differential equations of
motion, Eq. (10), includes 8 integration constants
determined by satisfying 8 boundary conditions, i.e.
two at each plate edge. Two displacements and three
stress components are on disposal, so that a large
number of boundary conditions can be specified. Each
plate edge can be simply supported, clamped or free,
with two possibilities in the case of a simply supported
edge. A list of complete boundary conditions is shown
in Table 1, [7].

 x = 0 or x = a y = 0 or y = b 

Simply supported, SS1 V = 0, σx = 0 U = 0 , σy = 0  

Simply supported, SS2 U = 0, σxy = 0 V = 0, σxy = 0 

Clamped, C U = 0, V = 0 U = 0, V = 0  

Free, F σx = 0, σxy = 0 σy = 0,  σxy = 0 

Table 1. Boundary conditions for in-plane vibrations of a rectangular plate
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4. A RECTANGULAR PLATE WITH SIMPLY SUPPORTED EDGES y=0 AND y=b, SS

Let us consider a plate with simply supported longitudinal edges SS2, i.e. V = 0 and σxy = 0, as a more realistic
case. That conditions are satisfied if separated functions are harmonic, i.e. Y(y) = cosγy and W(y) = sinϑy, where
γ = ϑ = nπ/b. Vibration parameters, Eq. (9), read:

2 2 2 2
* , ,

GE
ρ ρα ω γ β ω γ= − = − (13)

and they may be real or imaginary. Hence, functions X(x) and Z(x) , Eqs. (10), can take one of the following types:

( )
( )
( )
( )
( )
( )

1 2

1 2

1 2

1 2

1 2

1 2

Type 1: X x A cos x A sin x,

Z x B cos x B sin x,

Type 2: X x A cosh x A sinh x,

Z x B cos x B sin x,

Type 3: X x A cosh x A sinh x,

Z x B cosh x B sinh x,

α α

β β

α α

β β

α α

β β

= +

= +

= +

= +

= +

= +

(14)

where:

2 2 2 2
* , .

GE
ρ ρα γ ω β γ ω= − = − (15)

Depending on the type of solution displacements and stresses, Eqs. (11) and (12), take trigonometric, combined
hyperbolic and trigonometric, or complete hyperbolic form:

Type 1:

 ( ) ( )
( ) ( )

( )( ) ( ) ( )

( )( ) ( ) ( )

1 2 1 2

1 2 1 2

* 2 2
1 2 1 2

* 2 2
1 2 1 2
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cos sin 1 sin cos cos ,

cos sin 1 sin cos

x

y

U A x A x B x B x y

V A x A x B x B x y

E A x A x B x B x y

E A x A x B x B x

α α α γ β β γ

γ α α β β β γ

σ α νγ α α ν βγ β β γ

σ να γ α α ν βγ β β

= ⎡ − + + + ⎤⎣ ⎦

= ⎡− + + − ⎤⎣ ⎦
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cos ,

2 sin cos cos sin sin ,xy
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(16)

Type 2:
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* 2 2
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x

y

U A x A x B x B x y
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α α α γ β β γ
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= ⎡ − + + + ⎤⎣ ⎦
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cos cos ,

2 sinh cosh cos sin sin ,xy
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⎡ ⎤⎣ ⎦
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Type 3:

 ( ) ( )
( ) ( )
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( )( ) ( )

1 2 1 2
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1 2 1
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x

y
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β β γ
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⎡ ⎤+⎣ ⎦
⎡ ⎤= − + + + +⎣ ⎦

(18)

Among the large number of combinations of boundary conditions, only three typical cases, i.e. C – C, F – F and
C – F at edges x=0 and x=a are analyzed. Employing expressions for displacements and stresses for three types of
solutions, Eqs. (16), (17) and (18), the corresponding frequency equation specified in Table 2 is obtained, where:
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( )

( ) ( )

2 2 2 2 2

2 2 2 2

2 2

A , B , C 2 1 ,

A , B ,

C' 2 1 , C'' 2 1 .

α νγ β γ ν αβγ

α νγ β γ

ν αβγ ν αβγ

= + = − = −

= − = +

= − = −

(19)

Table 2. Frequency equations for a rectangular plate with simply supported edges, y=0 and y=b

Boundary conditions C – C and F – F are symmetric and by taking edge coordinate x=–a/2 and x=a/2 two
simpler frequency equations are obtained, Table 2. Derivation of frequency equation is illustrated in Appendix.

The above formulae cannot be used in case n=0, which is related to a bar longitudinal vibrations with restrained
transverse contraction. The governing differential equation of motion is obtained from the first of Eqs. (3):

2
2

2 *
d U U 0.
dx E

ρ ω+ = (20)

Assuming the solution of Eq. (20) in the trigonometric form k xU Asin ,
a
π

=  where k is a number of the mode

half-waves, natural frequencies are obtained:
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2

2
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α β
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sinh a sin a 2 C' AB
α β
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= −⎜ ⎟
⎝ ⎠

 
a atan tanAB C'2 2, a aC' ABtanh tanh
2 2

β β

α α
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Type 3 
1 cosh a cosh a 1 AB C''

sinh a sinh a 2 C'' AB
α β

α β
⎛ ⎞−
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⎝ ⎠

 
a atanh tanhAB C ''2 2, 
a aC'' ABtanh tanh
2 2

β β
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C–SS–F–SS2 0 x a≤ ≤  

Type 1 ( ) ( ) ( )2
2

AB AB
2 1 sin a sin a 2 1 cos a cos a 2 A 1 Bν αβ α β ν γ α β ν

αβ γ

⎡ ⎤⎡ ⎤
− + − − + = + −⎢ ⎥⎢ ⎥

⎢ ⎥⎣ ⎦ ⎣ ⎦
 

Type 2 ( ) ( ) ( )2
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⎢ ⎥⎣ ⎦ ⎣ ⎦
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Solutions of Eq. (27), 1 mncΛ =  and

( )2 mn1 c 2Λ ν= − , give:

*
( 1 ) ( 2 )
mn mn mn mn

G Ec , c ,ω ω
ρ ρ

= = (29)

or in the non-dimensional form *
a

E
ω ρΩ
π

= :

2
( 1 ) 2 2
mn

2
( 2 ) 2 2
mn

1 am n ,
2 b

am n .
b

νΩ

Ω

⎡ ⎤− ⎛ ⎞= +⎢ ⎥⎜ ⎟
⎝ ⎠⎢ ⎥⎣ ⎦

⎛ ⎞= + ⎜ ⎟
⎝ ⎠

(30)

Additional displacement fields for simply supported
plate can be specified, i.e.:

( )
( )

m n

m n

SS1-SS2-SS1-SS2:
U x, y C cos xcos y,

V x,y D sin x sin y,

α β

α β

=

=
(31)

( )
( )

m n

m n

SS2-SS1-SS2-SS1:
U x,y C sin x sin y,

V x, y D cos x cos y,

α β

α β

=

=
(32)

( )
( )

m n

m n

SS2-SS2-SS2-SS2:
U x,y C sin x cos y,

V x, y D cos x sin y.

α β

α β

=

=
(33)

In all cases the same expressions, Eqs. (30), for
natural frequencies are obtained. Some additional
considerations of vibrations of simply supported plates
can be found in Refs. [7] and [8].

6. VIBRATIONS OF A CIRCULAR PLATE

Differential equations of motion derived for a
rectangular plate can be directly applied for a circular
plate by transforming orthogonal coordinates x and y
into polar coordinates r and ϕ, see Figure 2.

*

k
k E .
a
πω

ρ
= (21)

Eq. (21) expressed in a non-dimensional form reads:

k
k *

a
k ,

E
ω ρΩ
π

= = (22)

where k = 1, 2, ... for clamped (C-C) and free (F-F)
ends, and k = 0.5, 1.5, ... for combined clamped-free
ends (C-F). It is convenient to use expression (22) as
a norm for the definition of frequency parameter for a
general case.

5. A RECTANGULAR PLATE WITH
SIMPLY SUPPORTED EDGES

Potential functions are assumed in the trigonometric
form:

( )
( )

m n

m n

m n

x,y Asin x sin y,

x, y Bcos xcos y,
m n, , m, n 1, 2, ....
a b

Φ α β

Ψ α β
π πα β

=

=

= = =

(23)

According to Eq. (4) displacements read:

( )
( )

m n

m n

U x,y C cos x sin y,

V x, y D sin xcos y,

α β

α β

=

=
(24)

where C = (Aαm − Bβn) and D = (Aβm + Bαn).
Displacements, Eq. (24), satisfy boundary conditions
SS1 at all four edges, Table 1.

Substituting Eq. (24) into Eq. (3), the following
system of two algebraic equations is obtained:

11 12

21 22

d d C 0
,

d d D 0
⎡ ⎤ ⎧ ⎫ ⎧ ⎫

=⎨ ⎬ ⎨ ⎬⎢ ⎥
⎩ ⎭ ⎩ ⎭⎣ ⎦

(25)

where:

( )

( )

( )

2 2 2
11 m n*

12 21 m n

2 2 2
22 m n*

1d 1 ,
2E

1d d 1 ,
2

1d 1 .
2E

ρ ω α ν β

ν α β

ρ ω ν α β

⎡ ⎤= − + −⎢ ⎥⎣ ⎦

= = − +

⎡ ⎤= − − +⎢ ⎥⎣ ⎦

(26)

The determinant of system (25) represents a
frequency equation which after some manipulation
takes the following simple form:

( ) 2 2
11 22 12 mn mnDet d d d p q 0,ω Λ Λ= − = − + = (27)

where:

( )

( )

2
mn mn*

2 2 2
mn mn mn m n

1, p 3 c ,
2E

1q 1 c , c .
2

ρΛ ω ν

ν α β

= = −

= − = +
(28)

Fig. 2  Circular plate for in-plane vibrations
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Hence, Eqs. (6) take the following form:
* 2

r
2

r

E 0,

G 0,

Φ ρω Φ

Ψ ρω Ψ

∆ + =

∆ + =
(34)

where: ( ) ( ) ( ) ( )2 2

r 2 2 2
. . .1.

r rr r ϕ

∂ ∂ ∂
∆ = + +

∂∂ ∂
, [14].

 Assuming harmonic circular variation of the
potential functions:

( ) ( )
( ) ( )

r

r

r, r sin n ,

r, r cos n ,

Φ ϕ Φ ϕ

Ψ ϕ Ψ ϕ

=

=
(35)

Eqs. (34) are transformed into Bessel’s equations:

2 2
r r

r2 2

2 2
r r

r2 2

d d1 n1 0,
dd

d d1 n1 0,
dd

Φ Φ Φ
ξ ξξ ξ

Ψ Ψ Ψ
η ηη η

⎛ ⎞
+ + − =⎜ ⎟⎜ ⎟

⎝ ⎠
⎛ ⎞

+ + − =⎜ ⎟⎜ ⎟
⎝ ⎠

(36)

where:

C C *

C C

r, ,
E

r, .
G

ρξ α α ω

ρη β β ω

= =

= =

(37)

Solutions of Eqs. (36) are expressed with special
functions:

( ) ( )
( ) ( )

r 1 n 2 n

r 1 n 2 n

A J A Y ,

B J B Y ,

Φ ξ ξ

Ψ η η

= +

= +
(38)

where Jn is a Bessel function of the first kind of order
n, and Yn is a Bessel function of the second kind of
order n.

According to Eq. (4) radial and circumferential
displacement read:

r

r

U U sinn ,
r r

V V cos n ,
r r

Φ Ψ ϕ
ϕ

Φ Ψ ϕ
ϕ

∂ ∂
= + =

∂ ∂
∂ ∂

= − =
∂ ∂

(39)

where:

r r
r r r r

d dn nU , V .
dr r r dr
Φ ΨΨ Φ= − = − (40)

Substituting Eq. (38) into Eq. (40) one arrives at:

( ) ( )

( ) ( )

( ) ( )

( ) ( )

n n
r 1 C 2 C

1 n 2 n

r 1 n 2 n

n n
1 C 2 C

dJ dY
U A A

d d
n nB J B Y ,
r r

n nV A J A Y
r r

dJ dY
B B .

d d

ξ ξ
α α

ξ ξ

η η

ξ ξ

η η
β β

η η

= + −

− −

= + −

− −

(41)

Stresses in polar coordinate system, [9], read:

*
r r

*

r r

U VE U sinn ,
r r r

V U UE sinn ,
r r r

V U VG cos n ,
r r r

ϕ ϕ

ϕ ϕ

νσ ν Σ ϕ
ϕ

σ ν Σ ϕ
ϕ

σ Σ ϕ
ϕ

⎛ ⎞∂ ∂
= + + =⎜ ⎟∂ ∂⎝ ⎠

⎛ ⎞∂ ∂
= + + =⎜ ⎟∂ ∂⎝ ⎠

⎛ ⎞∂ ∂
= + − =⎜ ⎟∂ ∂⎝ ⎠

(42)

where:

( )

( )

2 2
* r r

r r2

r r

2 2
* r r

r2

r r

2
r r

r r 2

2
r

r2

d d nE
r dr rdr

1 n d ,
r dr r

d d1 nE
r dr rdr

1 n d ,
r dr r

d d2n 1G
r dr r dr

d1 n .
r dr r

ϕ

ϕ

Φ ΦνΣ Φ

ν Ψ Ψ

Φ Φ
Σ ν Φ

ν Ψ Ψ

Φ Ψ
Σ Φ

Ψ
Ψ

⎡ ⎛ ⎞
= + − +⎢ ⎜ ⎟⎜ ⎟⎢ ⎝ ⎠⎣

− ⎤⎛ ⎞+ − + ⎥⎜ ⎟
⎝ ⎠⎦

⎡ ⎛ ⎞
= + − +⎢ ⎜ ⎟⎜ ⎟⎢ ⎝ ⎠⎣

− ⎤⎛ ⎞+ − ⎥⎜ ⎟
⎝ ⎠⎦

⎡ ⎛ ⎞= − − +⎢ ⎜ ⎟
⎝ ⎠⎢⎣

⎤
+ − ⎥

⎥⎦

(43)

Substitution of Eq. (38) into Σr and Σrφ, which are
used in specification of boundary conditions, yields:
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Integration constants Ai and Bi, i=1, 2, in the above formulae for displacements and stresses are determined
satisfying boundary conditions at a plate's inner and outer edges, as specified in Table 3.
Table 3. Boundary conditions for in-plane vibrations of a circular plate

 r = r0 or r = R 

Simply supported, SS1 V = 0, σr = 0 

Simply supported, SS2 U = 0, σrϕ = 0 

Clamped, C U = 0, V = 0 

Free, F σr = 0, σrϕ = 0 

For illustration, let us consider vibrations of a clamped plate. Boundary conditions for a plate without the central
hole read: Ur(R) = 0 and Vr(R) = 0. Constants A2 and B2 in Eq. (41) are zero since functions Yn(ξ) = 0 and Yn(η) = 0
take infinite values at r = 0. Hence, the system of boundary equations read:

( ) ( )

( ) ( )

n
C n

1

1n
n C

dJ n J
A 0d R
B 0dJn J

R d

ξ
α η

ξ
η

ξ β
η

⎡ ⎤
−⎢ ⎥ ⎧ ⎫ ⎧ ⎫⎢ ⎥ =⎨ ⎬ ⎨ ⎬⎢ ⎥ ⎩ ⎭⎩ ⎭−⎢ ⎥

⎢ ⎥⎣ ⎦

, (45)

that leads to the frequency equation:

( ) ( ) ( ) ( ) ( )
2

n n
C C n n2

dJ dJ nDet J J 0.
d d R
ξ η

ω α β ξ η
ξ η

= − = (46)

This type of equation is also obtained in Ref. [9].
In case of a free plate without a central hole, boundary conditions read:  Σr(R) = 0 and  Σrφ(R) = 0. Employing

Eq. (44), one finds for frequency equation:

( ) 11 22 12 21Det d d d d 0,ω = − = (47)
where:

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

2 22 2
n n n n2 2C C

11 C n 22 C n2 2 2 2

n n
12 C n 21 C n

d J dJ d J dJn nd J , d J ,
R d R dd R d R

1 n dJ dJ1 2n 1d J , d J .
R d R R d R

ξ ξ η ηνα βνα ξ β η
ξ ηξ η

ν η ξ
β η α ξ

η ξ

= + − = − + −

− ⎡ ⎤ ⎡ ⎤
= − − = −⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦

(48)

In-plane vibrations of a disk on shaft are another interesting problem. Boundary conditions at inner, r = r0, and
outer, r = R, edge read: Ur(r0) = 0, Vr(r0) = 0, Σr(R) = 0 and Σrφ(R) = 0. Employing Eqs. (41) and (44), a
homogenous system of algebraic equations is formed:

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

2 2
n n* 2 C

r 1 C n2 2

2 2
n n2 C

2 C n2 2

n n
1 C n 2 c n

n
r 1 C

d J dJ nE A J
r dd r

d Y dY n              A Y
r dd r

1 n dJ 1 n dY1 1              B J B Y ,
r d r r d r

dJ2nG A
rϕ

ξ ξνα νΣ α ξ
ξξ

ξ ξνα να ξ
ξξ

ν η ν η
β η β η

η η

Σ α

⎧ ⎡ ⎤⎪= + − +⎢ ⎥⎨
⎢ ⎥⎪ ⎣ ⎦⎩
⎡ ⎤

+ + − −⎢ ⎥
⎢ ⎥⎣ ⎦

⎫− −⎡ ⎤ ⎡ ⎤⎪− − − − ⎬⎢ ⎥ ⎢ ⎥
⎪⎣ ⎦ ⎣ ⎦⎭

=
( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

n
n 2 C n

2 22 2
n n n n2 2C C

1 C n 2 C n2 2 2 2

dY1 2n 1J A Y
d r r d r

d J dJ d Y dYn n              B J +B Y .
r d r dd r d r

             

ξ ξ
ξ α ξ

ξ ξ

η η η ηβ β
β η β η

η ηη η

⎧ ⎡ ⎤ ⎡ ⎤⎪ − + − +⎨ ⎢ ⎥ ⎢ ⎥
⎪ ⎣ ⎦ ⎣ ⎦⎩

⎫⎡ ⎤ ⎡ ⎤⎪+ − + − − + −⎢ ⎥ ⎢ ⎥⎬
⎢ ⎥ ⎢ ⎥⎪⎣ ⎦ ⎣ ⎦⎭

(44)
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( ) { } { }A C 0 ,ω =⎡ ⎤⎣ ⎦ (49)
where:

{ }

1

2

1

2

A
A

C ,
B
B

⎧ ⎫
⎪ ⎪
⎪ ⎪= ⎨ ⎬
⎪ ⎪
⎪ ⎪⎩ ⎭

(50)

while the elements of the matrix ( )A ω⎡ ⎤⎣ ⎦  are
coefficients of integration constants in Eqs. (41) and
(44). Natural frequencies are determined by satisfying

conditions for a nontrivial solution, ( )Det A 0ω =⎡ ⎤⎣ ⎦ .

7. NUMERICAL EXAMPLES

7.1 Rectangular plate

The application of the presented potential vibration
theory on in-plane vibrations is illustrated for a
rectangular plate of the following characteristics:
a=1.2 m, b=1 m, h=0.01 m, E=2.11011 N/m2, ν=0.3,
ρ=7850 kg/m3. Three boundary value problems are
considered:  simply supported longitudinal edges
(SS2), combined with clamped, free and clamped-
free transverse edges. Value of the frequency

parameter *a EΩ ω ρ π=  is determined by
employing the corresponding frequency equation from
Table 2. For this purpose arguments of trigonometric
functions, Eqs. (13), are expressed in terms of Ω:

2
2 2

2
2 2

aa n ,
b

2 aa n .
1 b

α π Ω

β π Ω
ν

⎛ ⎞= − ⎜ ⎟
⎝ ⎠

⎛ ⎞= − ⎜ ⎟− ⎝ ⎠

(51)

Frequency parameter Ω  is assumed and depends
on a combination of real and imaginary value of

arguments, i.e. α and β, α  and β, α  and β ;
frequency equation of Type 1, 2 and 3 is employed,
respectively, as follows:

( )

( )

( )

aType 1 , :  n ,
b

1 a aType 2 , :  n n,
2 b b

1 aType 3 , :  0 n.
2 b

α β Ω

να β Ω

να β Ω

<

−
< ≤

−
< ≤

(52)

In the considered numerical example ranges of the
frequency parameter depending on n are shown in
Table 4.

 1n =  2n =  3n =  
Type 3, ( ),α β  0 0.7099Ω≤ ≤  0 1.4199Ω≤ ≤  0 2.1298Ω≤ ≤  
Type 2, ( ),α β  0.7099 1.2Ω< ≤  1.4199 2.4Ω< ≤  2.1298 3.6Ω< ≤  
Type 1, ( ),α β  1.2 Ω<  2.4 Ω<  3.6 Ω<  

Table 4. Types of solution depending on value of frequency parameter, a/b=1.2

The present analytical solutions are listed in Tables 5, 6 and 7 for the three cases of boundary conditions. The
problem is also solved using the finite element method employing NASTRAN package [17] with fine 120 x 100
mesh and membrane elements. Values of the frequency parameters are included in Tables 5, 6 and 7, which indicate
a rather good agreement between analytical and numerical results.

Table 5. Frequency parameter *a EΩ ω ρ π=  of a rectangular plate, a/b=1.2, C-SS2-C-SS2

Mode 
no. n  Analytical FEM 

1 0  1 Eq. (23) 1.0000 
2 1  1.0936 Type 2 1.0936 
3 1  1.2669 Type 1 1.2668 
4 2  1.5968 Type 2 1.5964 
5 1  1.6977 Type 1 1.6974 
6 1  1.8269 Type 1 1.8265 
7 2  1.9717 Type 2 1.9710 
8 0  2 Eq. (23) 1.9998 
9 3  2.2371 Type 2 2.2361 
10 1  2.3634 Type 1 2.3627 
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Table 6. Frequency parameter *a EΩ ω ρ π=  of a rectangular plate, a/b=1.2, F-SS2-F-SS2

Mode 
no. 

n  Analytical FEM 

1 1 0.5660 Type 3 0.5661 
2 1 0.9052 Type 2 0.9051 
3 0 1 Eq. (23) 1.0000 
4 1 1.2270 Type 1 1.2270 
5 1 1.2495 Type 1 1.2494 
6 2 1.2635 Type 3 1.2634 
7 2 1.3665 Type 3 1.3662 
8 1 1.7185 Type 1 1.7181 
9 1 1.8038 Type 1 1.8033 
10 2 1.8356 Type 2 1.8355 

Table 7. Frequency parameter *a EΩ ω ρ π=  of a rectangular plate, a/b=1.2, C-SS2-F-SS2

Mode 
no. 

n  Analytical FEM 

1 0 0.5 Eq. (23) 0.5000 
2 1 0.7078 Type 3 0.7078 
3 1 1.1287 Type 2 1.1287 
4 2 1.3053 Type 3 1.3052 
5 1 1.4547 Type 1 1.4545 
6 1 1.4754 Type 1 1.4752 
7 0 1.5 Eq. (23) 1.4999 
8 2 1.7021 Type 2 1.7016 
9 3 1.9516 Type 3 1.9510 
10 1 2.0105 Type 1 2.0100 

The corresponding 10 natural modes, determined by a coarse mesh (24 x 20 elements) are, for transparency of
deformations, shown in Figures 3, 4 and 5. The bar natural modes, n=0, can be easily noticed.

Fig. 3  Natural modes of in-plane vibrations of a rectangular plate, a/b=1.2, C-SS2-C-SS2

Fig. 4  Natural modes of in-plane vibrations of a rectangular plate, a/b=1.2, F-SS2-F-SS2
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Fig. 5  Natural modes of in-plane vibrations of a rectangular plate, a/b=1.2, C-SS2-F-SS2

The preceding examples are also analyzed in Ref. [7], where frequency parameter is specified in a different way,

i.e. b GΩ ω ρ π= . The present results (PR) can be converted to the norm presented in Ref. [7] by factor

( )C b a 2 1 ν= − , as it is done in Table 8 for boundary conditions C-SS2-C-SS2. In both cases, analytical solutions

are almost identical. However, there are small differences between FEM values, in spite of the fact that the same
software and the same mesh density are used in both analyses. Numerical results from Ref. [7] and the present
results respectively converge from upper and lower side to the exact solution. It seems that in the meantime non-
conforming membrane element in NASTRAN has been substituted with conforming one. The abovementined
conclusions are also related to vibration analyses for other cases of boundary conditions.

Table 8. Comparison of frequency parameter b GΩ ω ρ π=  of a rectangular plate, a/b=1.2, C-SS2-C-SS2

Analytical FEM Mode 
no. n  

Ref. [7] PS Ref. [7] PS 
1 0 1.4086 1.4086 1.4087 1.4086 
2 1 1.5406 1.5405 1.5406 1.5404 
3 1 1.7846 1.7845 1.7847 1.7844 
4 2 2.2493 2.2492 2.2496 2.2487 
5 1 2.3915 2.3914 2.3917 2.3909 
6 1 2.5735 2.5734 2.5739 2.5728 
7 2 2.7774 2.7773 2.7779 2.7763 

7.2 Circular plate

Vibrations of clamped and free circular plates are analyzed according to the theory presented in Section 6; natural
frequencies are determined employing Eqs. (46) and (47), respectively. Values of vibration parameter

*2R EΩ ω ρ π= , which is analogous to the one used for a bar, Eq. (22), are listed in Tables 9 and 10, and
compared with the FEM results. Quite a good agreement between analytical and numerical results is achieved. The
first 10 natural modes are shown in Figures 6 and 7.

Table 9. Frequency parameter *2R EΩ ω ρ π=  of a clamped circular plate

Mode 
no. 

n  PS FEM 

1 1 1.2459 1.2457 
2 0 1.4430 1.4409 
3 2 1.9400 1.9361 
4 1 2.0234 2.0171 
5 0 2.4393 2.4344 
6 3 2.5229 2.5120 
7 2 2.6011 2.5876 
8 0 2.6422 2.6285 
9 4 3.0409 3.0186 

10 1 3.1881 3.1649 
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Fig. 6  Natural modes of a clamped circular plate

Table 10.  Frequency parameter *2R EΩ ω ρ π=  of a free circular plate

Mode 
no. 

n  PS FEM 

1 2 0.8833 0.8832 
2 1 1.0297 1.0282 
3 0 1.3043 1.3043 
4 3 1.3562 1.3537 
5 2 1.5986 1.5937 
6 4 1.7658 1.7588 
7 0 1.9342 1.9291 
8 5 2.1500 2.1345 
9 3 2.1974 2.1871 

10 1 2.2466 2.2436 

Fig. 7  Natural modes of a free circular plate

A practical problem of annular plate, clamped at the inner and free at the outer edge, r0 / R = 0.2, is considered.
The eigenvalue problem is formulated in Section 6. The obtained results of frequency parameter are given in Table
11 and compared to the FEM results. There are very small differences between the analytical and numerical solution,
except in case of the second frequency parameter. For a circular plate, discrepancy is reduced for small values of
ratio r0 / R and it disappears for r0 = 0, as can be seen in Table 10. All analytical results are determined by the same
algorithm and the same code. Also, the FEM results are determined by the same model. Currently, the causes of
discrepancy of frequency parameter only in case of the first mode (n=1) for the annular plate cannot be explained.
Therefore, the issue remains open for further investigation. The corresponding natural modes for natural frequencies
listed in Table 11 are shown in Figure 8. They are similar to those of the free plate, Figure 7, but their ordering is
changed.
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Table 11.  Frequency parameter *2R EΩ ω ρ π=  of a clamped – free annular plate, r0 /R=0.2

Mode 
no. n  PS FEM 

1 0  0.2243 0.2246 
2 1  0.6824 0.5872 
3 2  0.9922 0.9821 
4 1  1.3137 1.3465 
5 3  1.3728 1.3658 
6 0  1.4030 1.4034 
7 2  1.6304 1.6447 
8 4  1.7679 1.7474 
9 5  2.1502 2.1087 

10 0  2.1937 2.1831 

Fig. 8  Natural modes of a clamped-free annular plate, r0 /R=0.2

8. CONCLUSION

In-plane vibrations of rectangular and circular plates
are interesting problems from a practical point of view.
A general approach to the displacement potentials has
been used for a rectangular plate. Two coupled
differential equations of motion have been decomposed
into two mutually independent equations. Employing
the method of separation of variables, the vibration
problem has been solved in a relatively simple and
transparent way. It has been shown that an analytical
solution of vibrations can be obtained for a rectangular
plate with two simply supported opposite edges, and
for any combination of boundary conditions for the
remaining two edges. Rather simple frequency
equations have been given for clamped, free and
combined boundary conditions of a rectangular plate.

Uncoupled equations of displacement potentials
derived for rectangular plate have been directly applied
for circular plates. Circumferential variation of
potentials has been assumed in the form of
trigonometric series, while radial variation has been
obtained solving governing Bessel equations. In that
way vibrations of annular plates can be analyzed with
any combination of boundary conditions at the inner
and outer edges. Frequency equations have been
derived for clamped and free circular, as well for
annular plates.

The application of the presented potential theory
has been illustrated on a number of boundary value
problems of rectangular and circular plates. The
obtained results have been validated by the finite
element analysis. Analytical solutions can be used as a
benchmark for numerical methods.
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10. APPENDIX: DERIVATION OF THE FREQUENCY EQUATION FOR RECTANGULAR
PLATES, C-SS2-C-SS2

Displacement functions of x variable are considered, U(x) and V(x), Eqs. (16). The boundary conditions read:
U(0) = 0, V(0) = 0, U(a) = 0, V(a) = 0. The first two conditions give:

1 2 1 2B A , A B .α β
γ γ

= − = − (A1)

Substituting B1 and A1 into the second two conditions, one arrives at the eigenvalue problem:

( )

( )
2

2

cos a cos a sin a sin a
A 0

.
B 0

sin a sin a cos a cos a

αβα α β α γ β
γ

αβγ α β β α β
γ

⎡ ⎤− +⎢ ⎥ ⎧ ⎫ ⎧ ⎫⎢ ⎥ =⎨ ⎬ ⎨ ⎬⎢ ⎥⎛ ⎞ ⎩ ⎭⎩ ⎭− + −⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦

(A2)

Determinant of the above matrix leads to the frequency equation:

( ) ( )
2

2Det 2 1 cos a cos a sin a sin a 0.αβω αβ α β γ α β
γ

⎡ ⎤⎛ ⎞⎢ ⎥= − + + =⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

(A3)

It can be presented in the form shown in Table 2, Type 1, Eq. (a).
In case when the origin of the coordinate system is located in the middle of the axial edge y = 0, the boundary

conditions at x = a/2 and x = −a/2, read:
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1 2 1 2

1 2 1 2

1 2 1 2

1 2 1

a a a a aU A sin A cos B cos B sin 0,
2 2 2 2 2

a a a a aU A sin A cos B cos B sin 0,
2 2 2 2 2

a a a a aV A cos A sin B sin B cos 0,
2 2 2 2 2

a a a aV A cos A sin B sin
2 2 2 2

α α α α γ β γ β

α α α α γ β γ β

γ α γ α β β β β

γ α γ α β β

⎛ ⎞ = − + + + =⎜ ⎟
⎝ ⎠
⎛ ⎞− = + + − =⎜ ⎟
⎝ ⎠
⎛ ⎞ = − − + − =⎜ ⎟
⎝ ⎠
⎛ ⎞− = − + −⎜ ⎟
⎝ ⎠

2
aB cos 0.
2

β β− =

(A4)

Summation and subtraction of the above pairs of expressions give:

2 1

1 2

1 2

2 1

a a a aU U 2A cos 2B cos 0,
2 2 2 2
a a a aU U 2A sin 2B sin 0,
2 2 2 2
a a a aV V 2A cos 2B cos 0,
2 2 2 2
a a a aV V 2A sin 2B sin 0.
2 2 2 2

α α γ β

α α γ β

γ α β β

γ α β β

⎛ ⎞ ⎛ ⎞+ − = + =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠
⎛ ⎞ ⎛ ⎞− − = − =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠
⎛ ⎞ ⎛ ⎞+ − = − − =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠
⎛ ⎞ ⎛ ⎞− − = − + =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

(A5)

The first and the last, and the second and the third expressions of Eqs. (A5), represent two uncoupled eigenvalue
problems:

2

1

a acos cos A 02 2 ,
Ba a 0sin sin

2 2

α α γ β

γ α β β

⎡ ⎤
⎢ ⎥ ⎧ ⎫ ⎧ ⎫

=⎢ ⎥ ⎨ ⎬ ⎨ ⎬
⎩ ⎭⎢ ⎥ ⎩ ⎭−⎢ ⎥⎣ ⎦

(A6)

1

2

a asin sin A 02 2 .
Ba a 0cos cos

2 2

α α γ β

γ α β β

⎡ ⎤−⎢ ⎥ ⎧ ⎫ ⎧ ⎫
=⎢ ⎥ ⎨ ⎬ ⎨ ⎬
⎩ ⎭⎢ ⎥ ⎩ ⎭

⎢ ⎥⎣ ⎦

(A7)

Their determinants read:

( ) 2a a a aDet cos sin sin cos 0,
2 2 2 2

ω αβ α β γ α β= + = (A8)

( ) 2a a a aDet sin cos cos sin 0.
2 2 2 2

ω αβ α β γ α β= + = (A9)

The above frequency equations can be transformed into a simpler form as shown in Table 2, Type 1, Eqs. (b) and (c).
Relative values of the integration constants can be determined from the first or the second two equations of Eq.

(45). The former gives:

2 1

1 2

a aA cos , B cos ,
2 2

a aA sin , B sin .
2 2

γ β α α

γ β β α

= − =

= =
(A10)

Hence, expressions for displacement, Eq. (16), are reduced to the forms:

( )
( )

2 1

2 1

U x A cos x B cos x,

V x A sin x B cos x,

α α γ β

γ α β β

= +

= − +
(A11)
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POTENCIJALNA TEORIJA RAVNINSKIH VIBRACIJA
PRAVOKUTNIH I OKRUGLIH PLO^A

SA@ETAK

Prikazane su osnovne jednad`be ravninskih vibracija plo~a. Diferencijalne jednad`be gibanja riješene su
analiti~ki pretpostavljaju}i potencijale pomaka i koriste}i metodu separacije varijabli. Izvedene su frekventne
jednad`be za pravokutnu plo~u slobodno oslonjenu na dvije suprotne stranice te dvije preostale stranice upete,
slobodne odnosno kombinirano upeto slobodne. Dobivena su tri rješenja ovisno o rasponu vrijednosti argumenata
funkcija. Diferencijalne jednad`be gibanja okrugle plo~e dobivene su transformacijom izvedenih jednad`bi za
pravokutnu plo~u. Pretpostavljena je harmonijska promjena potencijala pomaka u cirkularnom smjeru dok je
radijalna promjena odre|ena rješenjem formiranih Besselovih diferencijalnih jednad`bi. Izvedene su frekventne
jednad`be za upetu i slobodnu okruglu plo~u, a isti postupak je korišten za analizu vibracija plo~e s kru`nim
otvorom. Primjena razvijene potencijalne teorije je ilustrirana na primjerima pravokutne i okrugle plo~e s gore
navedenim rubnim uvjetima. Analiti~ke vrijednosti prirodnih frekvencija uspore|ene su s rezultatima prora~una
metodom kona~nih elemenata i dobivena su vrlo dobra poklapanja rezultata analize.

Klju~ne rije~i: pravokutna plo~a, okrugla plo~a, ravninske vibracije, potencijalna teorija, analiti~ko rješenje,
MKE rješenje.

and:

( )
( )

1 2

1 2

U x A sin x B sin x,

V x A cos x B cos x,

α α γ β

γ α β β

= − +

= − −
(A12)

where a ax
2 2

− ≤ ≤ . Natural frequencies obtained by frequency equations (A8) and (A9) are related to modes (A11)

and (A12), respectively. Displacement function U(x) is symmetric and V(x) is antisymmetric for the former modes,
and vice versa.


