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SUMMARY

In this paper errors in displacement and stress fields in reciprocity based finite elements are studied in examples
of modelling of high order gradient fields using quadratic elements. In the reciprocity based FE formulation Trefftz
polynomial functions are used to formulate stiffness matrices by boundary integral equations. This leads to a
nonsingular boundary integral formulation in which tractions and displacements on the element boundaries are
expressed by the reciprocity relation. The displacements are chosen to be compatible between the elements and
weak satisfaction of interelement equilibrium defines the total system of equations in the discretized form. The
simple error estimator used in isoparametric elements is compared with the exact error distribution. It is shown that
this error estimator is not reliable for elements in which the governing equations are not satisfied inside the element.
The results also show the importance of inclusion of boundary conditions for an effective recovery algorithm for
stress.
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1. INTRODUCTION

The error estimator is an important tool for
obtaining solutions with required accuracy over the
whole investigated region by remeshing. The quality
of the error estimator can save some intermediate steps
of the analysis. In most FE formulations we obtain
discontinuous stress fields between the elements. This
discontinuity is used as a simple error indicator in
many FE programs [1]. However, in isoparametric
elements, the interelement discontinuity is not the only
source of modelling error. The equilibrium equations
inside the element are only satisfied in the weak
integral sense, and this influences the local error
distribution as it is well known [7]. In order to improve
the error estimates, the stresses are recovered by using
the polynomial interpolation functions for the nodal
displacements over the patches of elements [2, 3]. The
errors are evaluated as the difference between the
stresses obtained from element matrices and those
obtained by the stress recovery. Some authors use also
equilibrium and boundary conditions to recover more
accurate stress fields [4-7].

Our FE formulation is based on the reciprocity
principles together with the use of Trefftz-polynomial
functions as the test functions (reciprocity fields).

UDC 519.61: 531.2
Original scientific paper

Received: 19.06.2000.

Errors in modelling high order gradient fields
using reciprocity based FEM

Vladimír Kompi{ and Lenka Jakubovi~ová
Faculty of Mechanical Engineering, University of @ilina, Vel'ký diel, SK - 01026 @ilina, Slovakia

e-mail: kompis@fstroj.utc.sk

Similar ideas were used in Refs. [8-11] and a non-
singular BEM formulation can be found in this way. A
disadvantage of such a formulation is that it is
necessary to use very high degree terms if the region is
complicated, and many degrees of freedom are
necessary to model the problem with high accuracy.
The non-singular boundary element formulation,
however, can be used, as it is in our case, to formulate
the finite elements (domains in the multi-domain BEM
meaning) using similar principles as those used in the
hybrid FE formulations [12, 13]. The elements
(domains) are connected together based on the
satisfaction of the continuity of displacements and on
the weak formulation of the inter-domain equilibrium.
It is a simple task to find the necessary order of
quadrature formulae for accurate numerical integration
of all integral terms.

In this contribution we will give the basic principles
of the method for elasticity problems. Although the
numerical results are shown for 2D problems only, the
Trefftz polynomials for 3D problems can be found by
numerical procedures, or by algebraic manipulations
[14], and thus also the formulation for 3D problems is
straightforward. Also the formulations for other field
problems of continuum mechanics can be obtained in
a similar way.
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The accuracy of the reciprocity based FE
formulations is studied by modelling high degree (in
this paper 6-th degree is used) polynomial fields
defined by the Trefftz polynomials (i.e. polynomials
satisfying all the governing equations inside the
domains). In this way we can study the accuracy of
stress as well as displacement fields, and the element
behaviour in the parts with small and large field
gradients. It is shown that an efficient smoothing
procedure can reduce the errors by one order or even
more in the fields with high gradients compared to
simple averaging of the nodal values in both
reciprocity based and isoparametric elements. Reliable
local error estimators can be obtained and tested in this
way.

2. BETTI’S RECIPROCITY FE
FORMULATION

Let us consider the elasticity problem without body
forces for simplicity. The boundary displacements

( )xui
~~  and tractions ( )xti

~~  of each approximated
subdomain (element) ’e’ will be related by Betti’s
reciprocity theorem:

( ) ( ) ( ) ( ) ( ) ( )∫∫ =
ee

xdxtxUxdxuxT iiii ΓΓ
ΓΓ ~~~~~~~~ (1)

where x~  denotes a position field variable, ( )xU i
~  are

arbitrary displacement fields satisfying the equilibrium
conditions inside the element (Trefftz-displacement
functions), and ( )xTi

~  are corresponding (Trefftz)
tractions on the element boundary Γe. The Trefftz
functions for displacements can be in polynomial,
Legendre, harmonic, Bessel, Hankel, Kupradze’s form
[15], or they can be the fundamental solutions (in this
case also a free term is contained in Eq. (1), as it is
known from the BEM formulations [16-19]).

The boundary displacements can be expressed by
their nodal values d(j) (the upper index corresponds to

the nodal point) and shape functions ( )j
uN :

( ) ( )( ) ( ) { } [ ]{ }e
u

j
i

j
ui dNudNu == ~~ orξξ (2)

ξ is the local co-ordinate of a point on the element
boundary, and {de} is a vector of nodal displacements.

Similarly, tractions can be given by their values q(j)

at the nodal points and by corresponding shape

functions, ( )j
tN , as:

( ) ( )( ) ( ) [ ]{ }e
t

j
i

j
ti qNtqNt == ~~ orξξ (3)

which leads to the matrix form of Eq. (1):

[ ]{ } [ ]{ }ee qUdT = (4)

where {qe} is a vector of nodal tractions.
Elements of matrices [T] and [U] in Eq. (4) are

determined as follows:
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where ξ(j) and ω(j) are local co-ordinates and weights
in the Gauss quadrature formulae and J is the Jacobian.
T(k) and U(k) are tractions and displacements of
arbitrary and independent states of the element
satisfying all the governing equations.

We will assume that the whole domain will be
decomposed into subdomains (elements) and the
displacements between the subdomains will be
compatible, i.e. the displacements on the element
boundaries are common to the neighbouring elements.
The tractions, however, will not be in equilibrium
between the elements, and so the inter-element
equilibrium and natural boundary conditions will be
satisfied only in a weak (integral) sense. This is
imposed by the variational formulation:
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∫∫
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=−=
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In this equation the superscript T denotes
transposition, Γi, Γe and Γt are the element boundaries
and the domain boundaries with prescribed tractions,
respectively. The upper indices A and B denote
neighbouring elements with a common boundary. With
a bar we denote the prescribed values.

For the purpose of numerical implementation we
can write Eq. (6) in the form:
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or in the equivalent matrix form:

[ ]{ } { }∑∑ =
e

e

e

ee pqM (8)

The summations in Eq. (7) relate to elements,
Gauss integration points and nodal points, respectively.

From the Eq. (4) we can express the nodal tractions
in each element by its nodal displacements as:

{ } [ ] [ ]{ }e1e dTUq −= (9)

and substituting this into Eq. (8) yields:

[ ][ ] [ ]{ } { }∑∑ =−

e

e

e

e1e pdTUM (10)
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or:

[ ]{ } { }pdK = (11)
This is the resulting system of equations in the

discretized form and [K] is the global stiffness matrix.
We did not take into account prescribed boundary

displacements in the formulas above for the sake of
simplicity. Solving the Eq. (11) we obtain the unknown
nodal displacements.

In Eq. (9), the number of Trefftz functions
(arbitrary states of the element) has to be equal to, or
greater than the number of d.o.f. in displacements in
order to derive a unique solution.

Similarly, for the unique solution of the inter-
element equilibrium (in the weak sense) the number of
components of the element displacement vector should
be equal to, or greater than, the number of components
of its nodal tractions.

3. STRESS EVALUATION

Having obtained the nodal displacements from Eq.
(11) the tractions at nodal points for each element can
be computed from the Eq. (9).

The stresses were obtained in three ways:
(1) The stresses in the corner points of elements are

obtained from the element tractions. The stresses on
the element boundaries are calculated in local
coordinates (normal and tangent components): Two
components for 2D (normal and shear component) and
three components in 3D are identical with the tractions
(transformed into the corresponding directions) [16].
Let ts, tt and tn be the traction components in two
orthogonal directions, s and t and in the normal
direction, respectively, on the element boundaries in
the local co-ordinates. The other components of stress
can be found from strains obtained from the boundary
displacement fields.

In 2D we have:

( )ttnttnnntnt G2t
1

1
tt εν

ν
σσσ +

−
=== (12)

for plane strain (ν*=ν/(1+ν) for plane stress) state and:
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for 3D problems, where G is the shear modulus. The
strains εss, εtt, εst have to be computed from the
displacements at the element nodal points, and the
corresponding shape functions on each side of the
element separately by the standard methods known
from FEM or BEM formulations.

(2) The stresses are obtained from the Trefftz-stress
polynomials which correspond to the Treffts
displacement functions. These functions are
determined from the nodal displacements using a Least

Square (LS) numerical procedure similar to that
described below.

(3) The stress field is computed by using nodal
displacements of the elements and known tractions
(prescribed loads) on the boundaries for the definition
of Trefftz polynomials for displacements and stresses.

Also, continuous stress fields can be obtained using
the Moving Least Square (MLS) techniques from
displacements and tractions at the nodal points over
some patches of nodes. Similar ideas have been used
in [4, 20]. We assume the displacement field (at a field
point x), {u(x)}, is given in the form:

( ){ } ( )[ ]{ }cxUxu = (14)

where [U(x)] is a matrix of Trefftz-displacement-
functions and {c} is the vector of unknown
coefficients. If Trefftz polynomials are used for the
Trefftz- functions, we can easily express strain and
stress fields from displacements (14). The stress field
can be written then as:

( ){ } ( )[ ]{ }cxSx =σ (15)

where the matrix of Trefftz-stress-functions [S(x)] is
derived from the matrix [U(x)]. Similarly, we can
express Trefftz-tractions as:

( ){ } ( )[ ]{ }cxTxt = (16)

In this approximation we use the full Trefftz
polynomials of the chosen degree and the unknown
coefficients {c} are computed by LS method from:

( )[ ]{ } { }( )
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where {di} and {ti} are the displacements and tractions

at the nodal points in a domain of influence, and d
iw

and t
iw  are corresponding weighting functions

necessary for the dimensionality.
The accuracy of the last method is much higher

than the other two as was shown in [21].

4. HIGH DEGREE TREFFTZ POLYNOMIAL
FIELDS IN ELASTICITY PROBLEMS

For the sake of investigation of modelling errors
and error estimation in FEM formulations we studied
the problems on the models of a simple quadrilateral
domain with displacement boundary conditions
corresponding to the problem described by high degree
Trefftz (we chose the 6-th degree) polynomials. Young
modulus equal to 1000 MPa and Poisson ratio equal to
0.3 were chosen in the calculations. The domain was
approximated by eight noded quadrilateral quadratic
(isoparametric serendipity) elements in ADINA, and
by the same shape and the same order of
approximation was used for the reciprocity based

(13)
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elements. The displacements of the nodal points on the
domain boundary were prescribed according to the
exact Trefftz solution, and so the exact errors in both
displacement and stress fields could be studied.

Figure 1 shows the deformed region as defined by
the test 6-th degree Trefftz displacement polynomials.
The mesh and contours of the displacement
(magnitudes of the vector field values), and von Mises
stress fields of the test fields are given in Figures 2 and
3, respectively. In all these and following Figures, as
well, the maximal values of corresponding field
variables in the region are given, so that we can obtain
information about relative errors, as well.

Errors in the calculated fields of the von Misses
stress obtained from the quadratic isoparametric
serendipity elements are given in Figure 4, and those
obtained by the reciprocity based FE are shown in
Figure 5. The mesh of 10 by 10 elements was used in
both cases. Corresponding displacement fields are
given in Figures 6 and 7.

The informations like those indicated in Figures 4
to 7 cannot be obtained for general problems. Instead
some error estimators are used in the stress recovery
phase [2-7]. One of the simplest error estimators is that
used in many commercial programs [1] based on the
jumps in the stress fields between neighbour elements.
However, if elements are used in which the equilibrium

Fig. 2  Mesh (a) and contours (b) of test displacements given by Treffts displacement polynomials of 6th degree (Max. 4.0136)

Fig. 3  Mesh (a) and contours (b) of test von Mises stresses defined by Trefftz stress polynomials of 6th degree (Max. 1.4488e+4)

Fig. 1 Deformed region described by the test Trefftz
polynomials of 6th degree (Max. 4.0136)

equations are not satisfied inside the elements (in a
strong sense), then such error estimators are not
reliable as we can see from Figure 8. We can obtain
not only underestimated errors, but also incorrect
distributions of errors (see Figures 4 and 8 for
comparisons).

The errors in displacement field are given in Figure
9 with both prescribed boundary displacements
(Figure 9a) and prescribed boundary tractions (Figure
9b). From this figures we can see the behaviour of
exact errors in the quadratic elements. Obviously, the
discontinuities of the first derivative of the

a) b)

a) b)
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Fig. 4  Mesh (a) and contours (b) of errors in von Mises stress field computed from the quadratic isoparametric mesh of elements
(Max. 182.5544)

Fig. 5  Mesh (a) and contours (b) of errors in von Mises stress field computed from the quadratic reciprocity based 10x10 elements
(Max. 177.4861)

Fig. 6  Mesh (a) and contours (b) of errors in displacement field computed from the quadratic isoparametric elements (Max. 8.7562e-4)

Fig. 7   Mesh (a) and contours (b) of errors in displacement field computed from the quadratic reciprocity based elements (Max. 5.9714e-4)

a) b)

a) b)

a) b)

a) b)
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displacement fields (apparent slope discontinuities
along the element boundaries are caused by course
graphics) are basis of the stress jumps between the
elements and so, the roughness of displacement errors
(not the total errors in displacements) and errors in
stress fields are closely related. Comparing the Figures
9a and 9b, we can see that the roughness of both fields
is comparable, if we exclude the outer rows of
elements. This shows, how important is to include the
static boundary conditions in the evaluation of stress
fields on the parts of the boundaries with prescribed
tractions. For comparison we give only some maximal
values of the field variables as follows:

Von Mises stress: 14488.
Error in tractions: 224.
Error in the averaged stress: 145.
Error in the smoothed stress: 21.

The smoothed stresses were obtained using MLS
techniques using quadratic Trefftz interpolation
polynomials with the Domain of Influence of the same
size as the diagonal of the elements, and using the
known boundary tractions in the Point of Interest (POI)
when the POI was on the boundary of the domain.

In the last example the band with hole was
modelled by the reciprocity based FEM. Because of
the symmetry only a quarter of the problem was
modelled. The stresses in the point A for 3 and 9

element models (Figure 10) compared with analytical
solution for infinite band and with FEM solution
obtained with very fine isoparametric model (643
quadratic elements) are:

3 elements reciprocity: 4.15
9 elements reciprocity: 4.31
463 elements isoparametric: 4.36
analytic solution: 4.3

Fig. 8  Error field estimated from interelement stress incompatibilities by isoparametric displacement FE formulation

Fig. 9  FE mesh distored by displacement errors with prescribed displacement (a) and tractions (b), respectively

Fig. 10  FE models for a band with hole: (a) 3 element model,
and (b) 9 element model

a)

b)

a) b)

a) b)
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The overall convergence properties can be studied
on the behaviour of primary (displacement) field and
it is documented on the total deformation of the region
(points B and C in Figure 10). Vectors of displacements
in the points B and C are given in the first and second
column in the following table and compared with
isoparametric 463 element solution:

3 elements: 0.006109 0.005437
9 elements: 0.005911 0.005378
463 elements: 0.005825 0.005382

5. CONCLUSIONS

The objective in this paper was to present errors in
FEM modelling. If the difference between the
smoothed fields obtained by averaging in the nodal
points of neighbour elements and the values obtained
from element equations are taken as the error
estimators, we have shown that such error estimators
not only underestimate the errors, but also give
different error fields from their exact values. The
source of this effect is that the interelement
incompatibility in tractions alone cannot correctly
introduce the approximation errors. If the same
procedure is used for elements defined on the basis of
reciprocity, when the only equations, which are
satisfied in the weak sense, are the interelement
equilibrium equations, then the traction
incompatibility gives the upper boundaries for errors
in stress fields. However, if smooth stress fields are
obtained from nodal displacements and boundary
tractions using Trefftz polynomial interpolating
functions, then the errors in stress field are lower than
those indicated by the jumps in tractions in the
neighbour elements.

The exact errors were obtained when the Trefftz
polynomials of higher degree were used for test
functions. Both geometric and static boundary
conditions were examined. This type of test showed
the importance of taking into account the boundary
conditions in the postprocessing (stress recovery)
stage. The errors in the recovered stress field are one
order lower in the example with higher gradients than
those obtained by simple averaging of their nodal
values.
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POGREŠKE U MODELIRANJU GRADIJENTNIH POLJA VISOKOG STUPNJA UPORABOM
RECIPRO^NO UTEMELJENE METODE KONA^NIH ELEMENATA

SA@ETAK

U ovom se radu pogreške pomaka i polja naprezanja u recipro~no utemeljenim kona~nim elementima prou~avaju
na primjerima modeliranja gradijentnih polja visokog stupnja, koriste}i kvadratne elemente. U recipro~no
utemeljenoj formulaciji kona~nih elemenata Trefftz-ove polinomne funkcije koriste se za formuliranje matrice
krutosti pomo}u rubnih integralnih jednad`bi. To dovodi do nesingularne rubne integralne formulacije u kojoj se
deformacije i pomaci na granicama elemenata izra`avaju pomo}u odnosa recipro~nosti. Pomaci su odabrani tako
da budu kompatibilni izme|u elemenata, a nejako zadovoljenje ravnote`e me|u elementima definira cijeli sustav
jednad`bi u diskretiziranom obliku.

Jednostavni ocjenjiva~ pogreške koji se koristi u izoparametrijskim elementima uspore|uje se s to~nom
distribucijom pogreške. Vidi se da ovaj ocjenjiva~ pogreške nije pouzdan za elemente u kojima nisu zadovoljene
vode}e jednad`be unutar elemenata. Rezultati tako|er pokazuju va`nost uklju~ivanja rubnih uvjeta zbog efikasnog
obnavljanja algoritma naprezanja.

Klju~ne rije~i: ocjenjiva~ pogre{ke, Trefftz-ove polinomne funkcije, recipro~no utemeljena MKE, gradijentna polja
visokog stupnja.
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