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SUMMARY

The study of a mathematical model, i.e. Fröhlich’s Brain-wave model, pertinent to the propagation of brain
waves into the Great Membrane, is the focus of interest in this paper. Some new results are presented concerning the
response of the system to external stimuli - both ac and dc. In contrast to an earlier claim that a restricted version of
the model (containing only 2 degrees of freedom) exhibits a chaos only when the external stimulus contains both ac
and dc components we find that ac component alone is sufficient. The extensive bifurcation diagrams of the model
are given and the detail of chaotic region is clearly presented for this case.
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1. INTRODUCTION

Brain-waves are minute, low frequency, electrical
potentials - generally of magnitude less than 300 µV -
which are produced by the brain and recorded as an
electroencephalogram (EEG) using a system of
electrodes attached to the scalp, Freeman [1], [2].
Although the recorded signals are highly complex -
often resembling random noise - they can be broadly
categorised according to their frequency and
amplitude, which appear to be inversely related. Soon
after their discovery by Hans Berger in the mid-1920's,
it was realised that Brain-waves were a valuable
electrophysiological concomitant of different levels of
conscious awareness, such as attentiveness,
wakefulness, sleep and various pathological and drug
induced state of unconsciousness. Thus for example,
the so-called α-waves, covering the frequency range
of 8-12 Hz, which represents the onset of an awake,
relaxed, but attentive, state with the eyes closed, give
way, with the onset of drowsiness and light sleep, to
the slower (4-7 Hz), larger amplitude θ - waves, which,
in turn are replaced by the even slower (0.5 - 4 Hz) δ -
waves as deep sleep is reached.

An ingenious model for the generation of brain-
waves - which not only yields a frequency which is
volume independent, but which also affords an
understanding of the hyper-sensitivity of many aspects

of brain-function to ultra-weak external stimuli - was
presented by H. Fröhlich in 1974 at MIT, and
subsequently published in 1977, Fröhlich [3]. This
model is based on the possibility of periodic, self-
sustaining, chemical reactions within an enzyme
system localised in the Greater Membrane of the brain,
involving its cyclical excitation and de-excitation via
chemical reaction with a substrate system. The
polarisation field associated with its excited enzyme
state exhibits limit cycle behaviour which makes them
highly sensitive to external electrical and (internal)
chemical influences.

The interaction of external electric fields with the
internal limit cycle has been the subject of
continuing theoretical research since 1977, Kaiser
[4], [5] and Fröhlich and Hyland [6]. One of the most
interesting findings is that in the presence of an
external oscillatory electric field, the model can
exhibit deterministic chaos, but only - it is claimed,
Kaiser [7] - provided a static field is simultaneously
present.

It has been claimed that a restricted version of the
model (containing only 2 degrees of freedom) exhibits
a chaos only when the external stimulus contains both
ac and dc components. In this paper it is shown that ac
component alone is sufficient to exhibit chaotic
behaviour and the detail of bifurcation diagrams are
presented.

UDC 612.82: 612.014.42
Original scientific paper

Received: 14.08.2000.

Results on Fröhlich’s Brain-wave model
Ahmet Uçar(1) and Gerard J. Hyland(2)

(1)Department of Electrical-Electronic Engineering, Firat University, 23119 Elazig, Turkey
e-mail: aucar1@firat.edu.tr

(2)Department of Physics, University of Warwick, Coventry CV4 7AL, United Kingdom

¢



A. Uçar, G.J. Hyland: Results on Fröhlich's Brain-wave model

2 ENGINEERING MODELLING 13 (2000) 1-2, 1-5

2. BRAIN - WAVE MODEL

Fröhlich's model is based upon a system of
substrate molecules (of number S) and enzymes, N of
which are in the highly activated state and Z of which
are not excited. The rate of increase in the number of
activated enzymes is proportional to:

(i) their concentration, N,
(ii) the concentration Z of the remaining unexcited

enzymes, and
(iii) the concentration, S, of the substrates. Including

the decrease in N due to spontaneous transitions
back to the ground state (characterised by a rate
constant β), the following equation for the first
state variable, N, is obtained:

NSZNN βα −=& (1)

where α is a constant parameter. On the other hand,
for every enzyme excited (to the highly polar state)
one substrate molecule is chemically destroyed; the
supply is assumed to be maintained, however, by an
influx of new substrates. If the rate of attraction of new
substrates is γ, then the second state equation is:

SSZNS γα +−=& (2)

Fröhlich [3] presented a third equation:

( )ZANSZNZ −++−= λβα& (3)

where the constant parameter in λ the final term on the
RHS, +λ(A−Z), is considered to arise from selective
long-range interactions, the origin of which does not
concern us here.

It may be noted that if Eq. (3) is neglected (which
is equivalent to assuming that the concentration Z of
unexcited enzymes remains constant = A), the problem
simplifies to a Lotka-Volterra "predator (N) - prey (S)"
system, such as is often used to model and study
biological phenomena such as biological clocks and
time-dependent neural networks.

The equilibrium points of the steady-state solution
of the brain-wave model are obtained by equating (1),
(2) and (3) to zero; there are two sets of solutions:

(I.) N0 = S0 = 0,   Z0 = A (4)

(II.)
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The first solution is a saddle point (unstable)
whereas the second one is a canter (stable). The
trajectory of the system is illustrated in Figure 1. The
arrows on the trajectories illustrated in Figure 1
represent the time evolution of the system.

The transformation of the system of Eqs. (1), (2)
and (3) to new variables which deviate from the
chemical equilibrium of Eq. (5), n = N − N0, s =S − S0
and z = Z − Z0. Substituting the new variables
N=N0+n, S = S0+s and Z = Z0+z into Eqs. (1), (2) and
(3) yields a new system:
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nzz && −−= λ (8)
where the constant parameters are all positive. The
system contains Eqs. (6), (7) and (8) includes slow
chemical oscillations only and its dynamical behaviour
will be investigated.

Neglecting any terms non-linear in n, s, and z, we
obtain:

0nn =+ βγ&& (9)
which is a simple harmonic oscillator of natural
frequency ω0 = (βγ)1/2.

Associated with the oscillatory electric polarisation
is an electric current which, being subject to resistance,
gives a negative contribution to dn/dt (see below). On
the other hand, a positive non-linear contribution arises
from the interaction between the excited (dipolar) enzyme
states which favours a non-zero average polarisation.
Including these effects, Eq. (6) generalises to:
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where c, d and Γ are constant parameters. The model
containing Eqs. (10), (7) and (8) is a superposition of
slow chemical and slow electric oscillations. This model
is also called the 'coherent oscillation model', with the
frozen z concentration [4]. It should be emphasised that
this system is not just a mathematical model. The basis
is completely within profound physical considerations
given in Kaiser [4, 5]. The system represented by Eqs.
(7), (8), and (10) exhibits point attractor for d2 ≥ c2 > 0;
conversely it exhibits limit cycle behaviour for
c2 ≥ d2 > 0, where the system parameters were chosen
as Γ2 = 0.01, A = 100, αA = 0.1, β  = γ  = 4, and λ = 60.
It has been shown that the limit cycling frequency is
ω ≈ 4.8 rad/s and is preserved when different sets of the
c2 and d2 are taken for the initial conditions of the
concentration n, s and z are respectively 4, 0 and 0.
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Fig. 1  The N–S phase portrait and cycles of the unforced
system of (1) and (2) while the concentration of unexcited

enzymes remains constant (Z ≡ A)



A. Uçar, G.J. Hyland: Results on Fröhlich's Brain-wave model

ENGINEERING MODELLING 13 (2000) 1-2, 1-5 3

The dynamic behaviour of the two component (n,s)
system in the case c2 ≥ d2 > 0 has been extensively
investigated by Kaiser [4]. In this study c2 = 5 and
d2 = 1 are taken for the second order system.

It has been shown that the dependence of the
maximum value of the fluctuating z variable on the
value of the parameter λ is significantly greater than
zero only for 1 < λ < 20; for λ > 500, z is effectively
zero, Uçar [8], and we retrieve the two component (n,s)
system which has already been extensively
investigated by Kaiser [5].

3. EFFECTS OF EXTERNAL STIMULUS

Of particular interest is the response of the system to
an external electric field stimulus, F(t), which interacts
directly (via RHS of Eq. (10)) with the dynamic
polarisation associated with the activated enzyme state:
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where Fext(t) donates the effect of an external time-
dependent electric field.

In this paper particular emphasis is given to dynamic
behaviour of Fröhlich's Brain-wave model with the
external stimulus of Fext = F0 + F1cosωt. The response
of the system has been studied so far, only when z is
neglected (coherent oscillation model, [4]).  Within this
restricted (n, s) model, it has been claimed, Kaiser [4],
that chaos arises only when the external field contains a
dc component, F0, Figure 2. The bifurcation diagram
shown in Figure 2 was obtained with a static electric
field of F0=100 and ω = 2.45; these parameter values
which have been used by Kaiser, and this diagram
confirm his results. For the bifurcation diagram, the
stroboscopic amplitude n consultation was obtained
such that n sampled with the dynamic electric force
frequency ω and depicted as a function of amplitude F1.

The bifurcation diagram is depicted in Figure 3
corresponding to F0 = 0 and ω = 2.45 shows that the
presence of a small chaotic region is difficult to detect. In
the vicinity of 128.1<F1<128.35, the system variable n
bifurcates after jumping phenomena, Moon [9], and has a
narrow chaotic bound. The system again settles down
onto two limit cycles after chaotic region. The bifurcation
diagrams depicted in Figures 2 and 3 are relevant only to
ω = 2.45. It is therefore necessary to investigate the
system's dynamic behaviour for a range of both
amplitudes and frequencies of the input stimulus. The
bifurcation diagram depicted in Figure 4 as a function of
frequency, ω, shows that the system exhibits chaotic
behaviour in the same frequency region for F1=60,
without the dc input component in the external stimulus.

Fig. 2  Bifurcation diagram of the second order system:
concentration, n, as a function of the stimulus field F1

of frequency ω =2.45, and static field F0=100

Fig. 3  Bifurcation diagram of the second order system:
concentration, n, as a function of the stimulus field F1

of frequency ω =2.45, and F0=0

Fig. 4  Bifurcation diagram of the second order system:
concentration, n, as a function of the stimulus frequency,

ω of F1 = 60, and F0 = 0

A large chaotic region may be seen in the
bifurcation diagram, Figure 5, which was obtained for
ω = 5. It is, of course, possible - as shown in Figures 3,
4 and 5 - to preserve a limit cycle behaviour, for
appropriate choices of amplitude of the external
stimulus and the frequency, ω. Figure 5 indicates the
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Fig. 5  The bifurcation diagram of the second order system in
which z and F0 are neglected

Fig. 6  The time response of enzyme concentrations, n and s,
when n is driven by an external stimulus Fext = 146 cos5t

Fig. 7  The phase portrait of n-s system (Z=A) when driven by
an external stimulus Fext = 146cos5t applied to the variable n

Fig. 8  The Poincaré section of the forced system
(Fext  = 146 cos5t)

presence of a chaotic region between F1 = 144.5 and
F1 = 146.9 for ω = 5, beyond which the system
becomes unstable.

Thus for Fext(≡ F1cos ωt) = 146 cos 5t, and the
same parameter values as used above, the time
response of the n and s concentrations is shown in
Figure 6 and the associated phase portrait and Poincaré
section in Figures 7 and 8, respectively; these clearly
indicate the presence of a deterministic chaos.

Thus, contrary to the implication of Kaiser [4], it
has been found that the second order system with the
dynamic external stimulus exhibits chaotic behaviour
without the necessity of a dc component.

In view of this difference, it is necessary to re-
examine the case F0 ≠ 0. For F0=100; it can be seen
from Figure 2 that chaos indeed exists, but does not set
in until F1 ≈ 174.5; evidently, the effect of the dc
component, F0 (as may be seen by comparing Figure 2
to Figure 3) actually stabilises the system against
chaos!

4. CONCLUSIONS

Fröhlich's model for Brain-waves (EEG) in its
second order form has been analysed and it has been
found to exhibit deterministic chaos. In particular, the
response of the model to weak external, time-periodic
stimuli has been investigated, thus extending the
existing analyses, Kaiser [5], based on the restricted
(n,s) model.

So far Fröhlich's Brain-waves model is analysed
where z concentration is frozen. However, it is
considerably important to investigate the chaotic
behaviour without external stimuli in the general form
of the model.

The study of the dynamic behaviour of the Brain-
waves model not only facilitates understanding dynamic
behaviour of the Brain-wave but also may stimulate the
development of new control strategies based on the
given model. There exist already some contributions to
the controll of the chaos in the brain, Schiff et al. [10].
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REZULTATI FRÖHLICHOVOG MODELA MO@DANIH VALOVA

SA@ETAK

Glavna tema ovog rada je prou~avanje matemati~kog modela, tj. Fröhlichovog modela mo`danih valova, koji se
odnosi na širenje valova do velike membrane. Iznose se neki novi rezultati koji se odnose na reakciju sustava na
vanjske poticaje, odnosno na ac i dc stimulanse. Za razliku od ranijeg mišljenja da ograni~ena verzija modela (koja
ima samo dva stupnja slobode) dovodi do kaosa samo onda kad vanjski poticaj sadr`i i ac i dc komponente, autor
ovog rada smatra da je dovoljna i samo ac komponenta. U radu su prikazani detaljni dijagrami bifurkacije ovog
modela kao i detalji kaoti~nog podru~ja za ovaj slu~aj.

Klju~ne rije~i: Fröhlichov model mo`danih valova, vanjski poticaji, elektroencephalogram, determinizirani kaos.
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