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SUMMARY

The paper presents the model and the respective developed software for the static analysis of concrete plates
and shells exposed to transient static loads by the finite element method (FEM). A degenerated shell element without
membrane and shear “locking” has been employed. The model simulates the influence of material and geometric
system nonlinearity. It is possible to include the dominant non-linear effects of reinforced concrete:  the development
of concrete cracks in tension and yielding of the concrete in compression, the changes in the tensile and shear
stiffness of concrete and the nonlinear behaviour of the reinforcement. The influence of the change in the structure
geometry is dealt with by using an updated Lagrangian coordinate system. The solved example illustrates the
reliability of the model and some possibilities of the application of the model and of the SALJ computer program.

Key words: concrete plates, concrete shells, transient static loads, degenerated shell element, material and geometric
nonlinearity.

1. INTRODUCTION

This paper presents a numerical model for the
analysis of reinforced concrete shells subjected to
transient static loads by the finite element method
(FEM). The adopted degenerated shell finite element
[1] eliminates the negative effect of the so-called shear
and membrane “lockings”. The 8 and 9 node elements
of a curved shell with a layered material model across
the shell thickness have been used.

The model is relatively simple and at the same time
it includes the dominant nonlinear effects of the
reinforced structures behaviour, such as:

- concrete yielding under compression,
- cracks development in concrete under tension,
- cracks opening and closing,
- tensile stiffness of cracked concrete,
- shear stiffness of cracked concrete,
- nonlinear behaviour of the reinforcement.
Concrete properties can vary for each layer of the

shell. The reinforcement is modelled as a special layer
of a respective thickness, with the strength and
stiffness in the direction of the bars.

The use of the updated Lagrangian coordinates
includes the influence of the change in the structure
geometry. The coordinates of the system nodes are
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updated in each iterative step of solution seeking and
the new displacement-strain relation is established.

The adopted numerical model is similar to
Figueiras’s model [2], with improvements which
mainly refer to: (i) inclusion of a more precise and
efficient degenerated shell element without the effect
of the shear and membrane “lockings”, (ii) more
adequate simulation of the tensile stiffness of cracked
concrete and (iii) better simulation of shear stiffness
of cracked concrete.

The accuracy of the presented model and the
developed SALJ computation program were verified
by analysing one example for which there are already
known experimental and numerical results.

2. ASSUMED DEGENERATED SHELL
ELEMENT

Since reduced and selective integrations result in
zero energetic modes, various authors have attempted
to develop different alternative approaches to avoiding
the problem of “lockings” [3-10]. The approach used in
this paper is the substitution shear field approach,
originally introduced by Bathe and Dvorkin [5] and later
generalised by Huang [11].
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The applied degenerated shell element [1] was
developed by using:

- Assumed transverse shear strains expressed in
the natural coordinate system [12];

- Assumed membrane strains expressed in the
orthogonal curvilinear coordinate system [11].

This element has no problems related to “locking”
and mechanism occurrence. The element is described
in detail in Ref. [1].

3. MATERIAL MODELLING

3.1 Concrete modelling

A rather simple concrete model has been used in
this paper [13-15], intended for everyday engineering
practice, based on the basic concrete parameters
(uniaxial compressive and tensile strength, the
modulus of elasticity and Poisson coefficient) which
should be known for other purposes anyway.

The graphical presentation of the adopted concrete
model is presented in Figure 1. Subsequently, concrete
modelling in tension and in compression is presented
separately.

3.1.1 Modelling of concrete under tension

The graphic interpretation of the concrete model
under tension is presented in detail in Figure 2. Linear-
elastic concrete behaviour has been assumed until its
tensile strength is reached. Cracks in concrete are
assumed to appear only in planes perpendicular to the
shell midsurface. Actually, it is considered that each
concrete layer across the shell thickness is in the state
of plane stress and that the cracks development is
monitored for this state [13]. It is also assumed that even
after cracking the concrete remains as a continuum. A
model of the so-called smeared cracks has been used. It
has been adopted that after the occurrence of the first
crack, its position and direction do not change after
subsequent changes of loading. Hence, the so-called
model of fixed orthogonal cracks has been used. After
the occurrence of cracks concrete becomes anisotropic,
and the cracks directions define the main anisotropy
directions. Both, partial and complete crack closings at
unloading have been modelled as well as new opening
of the previously developed cracks under repeated
loading. The contribution of the uncracked concrete
stiffness between cracks was simulated by gradually
decreasing the component of tensile stress perpendicular
to the crack plane. Figure 2 also illustrates the behaviour
under unloading and reloading. If the crack is closed,
i.e. when strain perpendicular to the crack plane is
negative, the compressive stresses along the plane can
be transferred in the same way as in homogeneous
concrete. After repeated opening of the previously
closed crack, it is necessary to take into account the
previously decreased tensile stiffness, i.e. for repeated
loads E is taken as in Figure 2.
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(ii) Two – dimensional representation

Fig. 1  Graphical review of concrete model

Fig. 2  Concrete modelling in tension

The shear stiffness of cracked concrete was
simulated as in Figure 3. In other words, such a model
has been adopted where the shear modulus of cracked
concrete is taken as the function of the strain normal
to the crack plane.
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3.1.2 Modelling of concrete under compression

Concrete modelling under compression is
graphically presented in Figure 1. The compressive
concrete behaviour was described using the flow
theory of plasticity, for which it was necessary to
define: the yielding condition, the flow rule and the
hardening rule as well the crushing condition.

The yielding condition was defined by [2]:
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For the model with a completely plastic behaviour,
σ0 was taken as limit stress fc' from the uniaxial
compressive test. The so-called associated flow rule
was used, i.e. it was assumed that the plastic strain
vector is perpendicular to the yielding surface. The
concept of effective stress and effective plastic strain
was adopted to define the hardening rule. In unloading
conditions, a linear behaviour was used with the initial
modulus of elasticity of concrete. The crushing
condition under compression was defined by the strain
invariants, analogous to Eq. (1).

3.2 Reinforcement modelling

The method of reinforcement modelling is graphically
presented in Figure 4, and the adopted stress-strain
relationship for steel is presented in Figure 5.

The reinforcement bars are modelled as separate
steel layers of equivalent (normalised) thickness (Aaξ)
at the respective (normalized) distance (ξa) from the
central shell plane. The stresses can occur only in the
bars direction. It was assumed that the concrete and
reinforcement displacements were entirely compatible.

A bi-linear stress-strain relation was used to
describe the steel behaviour, both in compression and
in tension. For unloading conditions, a linear behaviour
with the initial modulus of elasticity was assumed. The
bars collapse occurs when the strain in their direction
exceeds the limit value εau.

4. THE SOLUTION PROCEDURE

The known displacements dn, stresses σσσσσn and
unbalanced nodal forces ψψψψψn from the previous (n) load
increment are used. External current nodal forces are
computed by:

1nn1n
0

++ += Røø ∆ (2)

where ψψψψψn is residual forces at the end of the preceding
load increment, and ∆Rn+1 is the current (n+1) load
increment. The iterative process is given in Table 1.

5. NUMERICAL EXAMPLE

A parabolic cylindrical shell with a varying
thickness was analysed, with a uniformly distributed
load, which had been experimentally studied by
Hedgren [16]. The shell was supported at two edges
by a diaphragm, while the remaining two edges
remained free. The shell geometry, data on the
reinforcement and discretization by finite elements are
presented in Figure 6. More detailed data on the
geometry and reinforcement can be found in Ref. [16].
The analysis included only one fourth of the shell due
to the problem symmetry. The shell was simulated
across its thickness with 8 concrete layers. The
reinforcement is non-uniformly distributed, i.e.
concentration is more intense along the free edges. The
shell is freely supported at the diaphragm, with free
displacement in the direction of the x axis and rotation
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(i) The stiffness matrix K is updated or not, according to the adopted solution algorithm. 

(ii) The incremental displacements ∆di+1 are evaluated from the equilibrium equation: 

i
1

1i øKd −
+ −=∆  

where ψψψψi are the unbalanced nodal forces from the previous iteration. 
The total displacement vector di+1 is then updated by: 

1ii1i ++ += ddd ∆  

(iii) The incremental strains ∆εεεεi+1 and the total strains 1i+å  are evaluated: 

1i1i ++ = dBå ∆∆  

1ii1i ++ += ååå ∆  

where B includes large displacements. 

(iv) The incremental stresses ∆σσσσi+1 and the total stresses σσσσi+1 are calculated: 

1i1i ++ = åDó ∆∆  

1ii1i ++ += óóó ∆  

where D is the elasticity matrix taken as: 
• Either the elastic matrix for uncracked concrete or the corresponding matrix for 

cracked concrete for concrete layers 
• The elastic matrix for reinforcement steel layers 

(v) The stresses are corrected according to the material constitutive equations: 
• Concrete layers 

- Using the total stresses σσσσi+1 the maximum principal stresses σ1, σ2 acting in the shell plane are 
calculated, as well as the angle of principal stresses 

- If t1 f ′>σ  ( t2 f ′>σ ), or, if the concrete is already cracked, the stresses are updated according 
to the adopted model of tension stiffening of cracked concrete. 

- The effective stress σ is calculated (according to the yield function) using 1i+ó  or the updated 
stresses from the previous step. 

- Ifσ is greater than the initial yield stress or if the layers have already yielded, the stresses are 
corrected according to the adopted elasto-plastic behaviour. 

• Steel layers 
- Total stresses 

1ia +
σ  and total strains 

1ia +
ε  in the reinforcement bars direction are calculated 

- Stresses are updated according to Figure 5. If aua å
1i

>
+

ε , the bar is consider being broken. 

(vi) Equivalent nodal forces 1i+p  are calculated using the stress integration, as: 

Vd1i
V

T
1i ++ ∫= óBp  

where 1i+ó are the total corrected stresses according to the constitutive equations (material law). 

(vii) The out of balance forces 1i+ø  are calculated: 1i1i1i +++ −= pRø   

(viii) The convergence of the process is checked 

- If convergence criterion has been achieved, proceed to the next load increment. 
- If the convergence criterion has not been satisfied restart from step (i). 

 

Table 1.  The iterative process of the problem solution

angle around the y axis. The material parameters
adopted for the numerical analysis are presented in
Tables 2. The shell load is given by the ratio between
the observed load (P) and the design load (Ppr=0,358
N/cm2).

Some computational results are presented in
Figures 7 and 8.

It is evident from the presented figures that the
numerical results obtained by the SALJ program are
almost completely in agreement with the results
obtained by experiment [16], and with numerical results
obtained by Figueiras [2]. Furthermore, it should be
noted that the presented model is similar to Figueiras’s
model, with improvements listed in Section 1.
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Fig. 6  Geometry and finite element idealisation for a parabolic cylindrical shell [16]

Concrete Steel 

Elasticity modulus 2
c kN/cm 2069E =  Elasticity modulus 2kN/cm 20000Ea =  

Poisson’s ratio 1450.=ν  Poisson’s ratio 2kN/cm 4000H =′  
Ultimate compressive strength 2kN/cm .023fc =′  Yield strain 01.0  

Ultimate tensile strength 2kN/cm .480ft =′  Yield stress 2kN/cm .2925y =σ  

Crushing strain 00350cu .=ε  #3 
Ultimate stress 2kN/cm .4236fa =  

Tensile stiffness parameters 50m .=ε  Yield stress 2kN/cm .9121y =σ  

0020ts .=ε  #4 
Ultimate stress 2kN/cm .4934fa =  

Shear stiffness parameter 0020sh .=ε  #9 Yield stress 2kN/cm .6630y =σ  

  Ultimate stress 2kN/cm .0042fa =  

 

Table 2.  Material parameters

Fig. 7  Vertical deflection of the free edge
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6. CONCLUSION

The presented model for the analysis of concrete
shells exposed to instantaneous static loading includes
the dominant non-linear material and geometry effects
of the structure behaviour. The model is based upon
the basic concrete and reinforcement parameters and
is primarily intended for application in actual
engineering practice. Presented example as well as
others solved examples illustrate the accuracy and
reliability of the proposed model and developed
computational program SALJ.
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MODEL ZA STATI^KE ANALIZE BETONSKIH LJUSKI

SA@ETAK

Izlo`en je model i razvijen odgovaraju}i software za stati~ku analizu betonskih plo~a i ljuski, optere}enih
kratkotrajnim stati~kim optere}enjem, s pomo}u metode kona~nih elemenata. Uporabljen je degenerirani element
ljuske, kod kojega su eliminirani utjecaji tzv. posmi~nog i membranskog "locking-a". Model simulira utjecaj
materijalne i geometrijske nelinearnosti sustava. Mogu}e je uklju~iti dominantne nelinearne efekte armiranog
betona: razvoj pukotina betona u vlaku i te~enje u tlaku, promjenu vla~ne i posmi~ne krutosti betona, te nelinearno
ponašanje armature. Utjecaj promjene geometrije konstrukcije obuhva}en je preko pomi~nog Lagrange-ovog
koordinatnog sustava. Koristi se op}i degenerirani element ljuske, oslobo|en membranskog i posmi~nog "locking-a".
Riješeni primjeri ilustriraju pouzdanost i neke mogu}nosti primjene modela i prora~unskog programa SALJ.

Klju~ne rije~i: betonske plo~e, betonske ljuske, kratkotrajno stati~ko optere}enje, degenerirani element ljuske,
materijalna i geometrijska nelinearnost.
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