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SUMMARY

The equilibrium shape determination of a prestressed cable net structures termed “formfinding” can be achieved
through the classical Newton-Raphson iterative method. The convergence strongly depends on the choice of the
starting aproximation vector, which must lie within the “ball of convergence” or “basin of attraction” unknown in
advance. From experience this basin of attraction is very irregular, hence it was hypothesized that it may be a
fractal. For an explanation of this irregularity, a series of numerical experiments was performed with highly
simplified cable nets. It was confirmed that basins of attraction were fractals indeed. Cross-sections of these three
dimensional fractals are visualized, and they appear highly interesting and diverse. It is shown that the Newton-
Raphson method can also generate fractals with real numbers. Experiments were also performed with other iterative
algorithms, with similarly interesting results - both from the equation solving and from the fractal producing points
of view. It is believed that all discussed methods (except for the force density method which is specific to the
formfinding problem) can be also applied to explain convergence properties of many other nonlinear equation
systems.

Key words: cable net structures, formfinding, basin of attraction, fractals, iterative methods, nonlinear equations.

1. INTRODUCTION

1.1 Mathematical fractals

The “mathematical” fractals (fractals generated by
some mathematical recursive or iterative algorithm, in
contrast to materials like clouds, coastlines, lungs and
other known and unknown examples) can be generally
divided into two classes, which could be termed:
“synthetic” (recursive) and “analytic” (iterative). In
broad terms, whereas synthetic fractals are invented
(Koch, Sierpinski ...), analytic ones are discovered
(Mandelbrot, Julia, Newton-Raphson on the complex
plane ...) [1, 2]. More or less, all known “analytic”
fractals are generated by nonlinear algorithms with
complex (or quaternion) arithmetic. Therefore it is not
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surprising that among some members of the fractal
community there exists an unstated belief in almost
magic properties of complex numbers compared to real
numbers. Here are some characteristic citations:

‘So a fractal is essentially a graph of an iterative
process applied to complex numbers.’

‘Fractals formed from real numbers are pretty, but
you should see what complex numbers can do ...’

‘Secondly, and paradoxically, its border is infinite.
This is because Mandelbrot’s equation dealt in
complex numbers rather than real numbers.’

Here it will be argued that complex arithmetic is
not an essential condition for the generation of
“analytic” fractals. Reference to fractals and real
numbers was alluded to in Ref. [3] where a complex
equation has been separated into a real and an
imaginary part and iteration was performed for the
resulting system of two real equations. In the reference
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[4] generalization of the Mandelbrot algorithm in the
real domain is described.

Fractals described in this paper were discovered
while trying to explain strongly irregular behaviour of
Newton-Raphson iteration for systems of actual
nonlinear equations arising from the formfinding
problem for prestressed cable nets [5]. The new fractals
were found to be beautiful and diverse. Experiments
were also performed with some other iterative methods
and results were equally fascinating. These new
fractals will be referred to as FormFinding Fractals
(FFF).

It is difficult to imagine that the formfinding
equations represent some special case [6] and it seems
highly probable that many other nonlinear equation
systems must generate interesting fractals as well.

1.2 Cable net structures

Prestressed cable nets represent rational attractive
structures, in particular for long span roofs (Figure 1).

The simplest numerical model for approximate
shape determination (formfinding) is formulated by
neglecting all loadings except prestressing forces. The
cable intersection points are called nodes and cable
segments between two nodes are referred to as
elements. Every node must be connected with three or
more elements.

The shape of the cable net in equilibrium minimizes
potential energy:
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where xi, yi, zi are coordinates of the ith node, Pi,j>0 is
the prestressing (tensile) force in the element between
nodes i and j, and l i,j is the element length. The sum in
Eq. (1) is taken over all pairs of nodes i and j connected
by elements. The total number of nodes in the net is n.
The free nodes have three translational degrees of
freedom (DOF). The anchorage points are fixed nodes.
Their DOF are restrained and their coordinates are
given in advance as boundary conditions. Clearly the
anchorage points must not lie in a single plane -
otherwise the entire cable net would lie in the same
plane. Some nodes can be partially restrained and may
have one or two DOF. As all prestressing forces are
tensile, Q is a convex function of coordinates of all
free nodes coordinates, and consequently has exactly
one real minimum, which can lie in a regular or a
singular point of the function. Singularity of the
function Q at the minimum point corresponds to the
degenerate shape, when at least two nodes coincide and
one or more element lengths become equal to zero. In
engineering applications, an occurrence of a singular
minimum is an indication of a design error.

2. FORMFINDING PROBLEM

In the regular minimum all derivatives of Q with
respect to all DOF must be equal to zero.
Differentiating function Q with respect to coordinates,
a system of equilibrium equations is obtained, three
per every free node:
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Fig. 1  Example of cable structure [15]

Cables have almost uniform tensile stresses. Forces
caused by any external loading are small in comparison
with prestressing forces. A disadvantage of cable nets is
a requirement of a stiff and strong complementary
structures for anchorage of cable ends (similar to frame
of a tennis racket), which increases overall cost. Even if
the issue of anchorages is taken into account, large span
halls with net roofs are still comparatively inexpensive.

In contrast to conventional structures, lack of
flexural cable stiffness limits architect’s creativity. The
shape is determined by equilibrium conditions only. It
is however possible to impact on the structural shape
indirectly by changing the boundary geometry, by
variations of the prestressing force distribution, by
modifications of cable arrangements, by loading parts
of the structure with some ballast, by adding a
flexurally stiff elements etc, ...
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The sums are spread over all pairs (i,j) connected
by ni elements joined at node i. The (real) unknowns
are coordinates xj, yj and zj of free nodes and the axial
forces Pi,j. The total number of unknowns is 3nf+ne.
The number of free nodes is nf and ne is the total
number of elements, but the number of equilibrium
equations is only 3nf. Number of unknowns is
therefore greater than a number of equations
available, hence the solution is not unique, and ne
additional equations must be given for the problem
to be solved. The case with prescribed prestressing
forces Pi,j  [7] is considered here. In this case the
additional equations are trivial: Pi,j=const. If all
prescribed prestressing forces are equal, the sum of
cable lengths in equilibrium becomes minimal. Such
a configuration is called the minimal net - in analogy
with minimal surfaces [8, 9].

All formfinding algorithms numerically solve the
system of nonlinear algebraic Eqs. (2) by iterative
methods, where the Newton-Raphson (NR) method
represents a classical approach. A short description
of NR method for a single real nonlinear function,
and for a system of such functions is given in the
Appendix A.

Previous experience and numerical experiments
indicate that the convergence of the NR method for
the formfinding equations strongly depends on a
choice of a starting vector x(0) which must lie inside
the “basin of attraction”, (BA), usually of an irregular
shape. Sometimes, it may be possible that by starting
from an apparently quite reasonable approximation
of the solution, the iterative process diverges, while
on the other hand, the NR algorithm sometimes
surprisingly converges starting from a seemingly bad
starting approximation. Similar behaviour for some
other equations is analyzed in Ref. [10]. However
there always exists a small, smooth (non fractal) part
of the BA in the vicinity of the solution (“inner basin
of attraction”), but its position is unknown in
advance.

The hypothesis that the BA of the NR algorithm
in the formfinding problem might be a fractal in the
3nf-dimensional space is confirmed. For explanation
that it is indeed a fractal, an extremely simplified 1D
example is given in the Appendix B. In addition it
will be shown that some other iterative methods also
seem to have fractal BA, however different ones to
the BA of the NR method. Methods with larger BA
are generally more suitable for the initial stage of the
iterative process because the probability to guess a
convergent starting vector is greater. After s iteration
steps, the sth approximate solution lies safely within
the inner BA of the NR method. The rational strategy
is therefore to switch then to the NR method or to
any other method with a high asymptotic convergence
rate.

3. SINGLE NODE CABLE NET EXAMPLES

3.1 The model example formulation of and
the Newton-Raphson method

For numerical experiments and visualization, a series
of examples treating a cable net with a single free node
and three DOF were performed. In some cases, the BA
is smooth and uninteresting, but in other examples it is
recognized as a fractal. A 3D visualisation of a typical
simple BA is shown on Figure 2 where the “3D-pixels”
are represented as small cubes. All graphics was realised
in Mathematica 4.1 [11].

Fig. 3  Starting configuration for a single node “net” used for
numerical experiments. Elements are presented as lines and
nodes are marked with balls (S - support, F - free node, P -

prestressing force): a) perspective; b) plan view.

Absolute units of coordinates and forces are
irrelevant, because the ultimate solution depends only
on ratio of dimensions and forces. Intersection of BA
with the plane z=0 for all methods considered is
visualized (Figure 4). Coordinates of the supports and
prestressing forces are shown in Table 1. The eventual

Fig. 2  An example of the 3D Basin of Attraction (BA) for
Newton-Raphson (NR) method. A part of the basin is removed.

An example of a cable net with 4 supports and a
single free node (Figure 3) will be solved by different
iterative methods.

a)

b)
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equilibrium position of the free node for given data is:
x=3.5447, y=3.5642, z=0.3623, and the iterative
procedure is repeated for every pixel on a square
480×480 pixels within z=0 plane. Figures 5 to 11
corresponding to different methods have all the same
scale for easier visual comparison of the BA shape and
size. The convergence criterion is chosen so that the
norm of the unbalanced forces is r<10-6. An
iteration is considered as divergent if at least one of
the folowing criteria is satisfied:
− Current solution in a given iteration step lies in the

neighbourhood of one of the supports - singular
point of function Q (li<10-6).

− Iterated point is too far (li>106). All sufficiently
distant intermediate solutions produce divergence.

− The Jacobian matrix in a given step is almost
singular (det J<10-6).

− Iteration does not satisfy criterion after N steps
(N=500 adopted here. It may be that some pixels
can be erroneously considered as divergent
although they only need larger iterations to
converge. In numerical experiments this criterion
was not relevant.)

Table 1 Prestressing forces and coordinates of the supports

The good compromise between the NR and MNR
can be a periodic update of the approximate matrix by
calculation of the proper Jacobian matrix after every
m steps. The MNR is efficient for a weakly nonlinear
problems where the starting Jacobian matrix is a good
approximation of subsequent ones. On the contary, the
formfinding problem is highly nonlinear, and MNR has
a small BA and a poor asymptotic convergence rate.

3.3 Underrelaxation

This procedure is a simple extension of the standard
NR or MNR algorithm, where every NR or MNR
solution increment is multiplied by a factor ω<1.0. For
a model cable net problem the underrelaxation method
increases the basin of attraction in comparison to the
NR or MNR (Figures 6a-6b). Of course, the quadratic
convergence property of NR method is lost.

3.4 Line search

An optimal underrelaxation factor ω is different for
every iteration step. Line Search (LS) is an
improvement to the use of underrelaxation with NR or
MNR based on the calculation of ω within every step.
The increment multiplied by ω satisfies equilibrium in
the direction of the increment vector. The dot product
of the increment vector and the residual force vector is
therefore equal to zero. The factor ω is found
numerically by any robust method for solving a single
nonlinear equation, it is chosen here the bisection
method. (It should be noted that the NR method for a
single equation would not be a good choice because of
a possible irregular behaviour, similar to the example
from the Appendix B.) The BA for the LS is usually
much larger than the one for the standard NR or MNR.
An iteration process with LS generally requires less
steps, especially in the early stage of iterative process.

If we apply LS to the example from the Appendix
B (or for any problem with a single equation with a
monotonic function and only one solution) the basin
of attraction will be extended to a complete domain,
and only one global step will be sufficient (albeit with
more inner bisection steps; Figures 7a-7c).

3.5 Steepest descent method with line search

The steepest descent method SD is the simplest and
the most “naive”of all gradient methods. The new step
is chosen in the direction of the current residual.

For the cable net model problem a combination of
SD with LS is very efficient, but it is known that such
a procedure is not suitable for realistic problems, as
even for linear equations with many unknowns its
convergence is very slow. Nevertheless the method is
interesting for fractal experiments (Figure 8).

Support 

number i 

Coordinates 

xi       yi       zi 

Prestressing 

forces 

1 4.4     2.5     0.0 1.10 

2 4.2     8.5     0.0 1.28 

3 1.0     3.9     0.0 1.30 

4 7.2     5.9     3.0 0.80 

Different colours stand for different number of
iterations needed to satisfy covergence criterion,
however colouring scheme is not consistent for all
methods considered. For each fractal this scheme is
selected separately. As a reference solution the BA for
NR algorithm is visualized.

3.2 Modified Newton-Raphson method

The property of quadratic convergence of the
standard NR guarantees a small number of iteration
steps for achieving prescribed covergence criterion, if
starting vector lies within the basin of attraction.
Unfortunately every step requires many numerical
operations: as the generation of the Jacobian matrix
and the solution of the linear(ized) system of equations
is required. Computer time and memory needed for
calculations can be large. One of usual techniques for
reducing the total “cost” is the so-called Modified NR
method (MNR). A Jacobian matrix is generated only
in the first step, and usually decomposed (inversion is
numerically uneconomical for large matrices). In the
subsequent steps J(i) is approximated by J(0). Number
of numerical operations per iteration is greatly reduced,
but the convergence rate is no longer quadratic,
therefore the number of iterations increases and the
basin of attraction for the model cable net problem is
smaller (Figure 5).
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Fig. 4  Simple net problem: BA for the NR method Fig. 5  Simple net problem: BA for Modified Newton-Raphson
(MNR) method

Fig. 8  Simple net problem: Steepest Descent (SD) with the LS

a) b) c)
Fig. 6  Simple net problem: Underrelaxation. BA for: a) the NR, ω = 0.6; b) the MNR, ω = 0.6; c) the MNR, ω = 0.4.

a) b) c)
Fig. 7  Line search (LS): a) with the NR; b) with the MNR; c) MNR with the LS in the first five steps
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3.6 Line search with a slack criterion

In many applications, a slack criterion for the LS is a
good enough approximation. The factor β<1.0 is
introduced and it is sufficient that the new unbalanced
force r(i) in the direction of the step is reduced in
comparison with the old one r(i-1): r(i)≤β r(i-1) (BA for
the cable model problem is illustrated in Figures 9a-9c).

3.7 Force density method

The force density method will be developed as a
problem specific procedure for formfinding problem
with prescribed prestressing cable forces [12, 13]. The
ratio of the prestressing force to length in Eq. (2) is
assumed to be constant in every step: Pi,j/li,j=Di,j=const.
This ratio is reffered to as the force density (FD), and
Eqs. (2) can be rewritten:
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leading to three uncoupled systems of linear equations
with equal matrices. After solution of all three systems
an exact equilibrium solution of the formfinding
problem is obtained (neglecting numerical errors)
without iteration, but computed forces in elements are
not equal to the prescribed ones. In order to achieve the
prescribed forces, an iteration is therefore necessary. The
new lengths are calculated from the current coordinates:

( ) ( ) ( )2ji
2

ji
2

jij i, z - z  y - y  x - x l ++=

and then the new force densities Di,j are computed as

ratios of prescribed forces and current lengths. For the
model cable net problem, the starting configuration is
chosen as geometrically admissible to enable
visualisation. (In practical formfinding calculations, the
iteration may start from the choice of the element lengths
which are not necessarily geometrically admissible. For
simplicity, all element lengths can be chosen as unit
length.)

The BA for the FD extends to the entire solution
space, except for the small neighbourhood in the
vicinity of singular points (supports). With its
smoothing property, FD method is very suitable for the
initial stage of the formfinding algorithm, however it
is not optimal for the final stage close to solution
convergence. By increasing the number of FD steps
the divergent region around singular points is further
reduced (Figures 10a-10c).

a) b) c)
Fig. 9  LS with a slack criterion, β=0.5: a) with the NR; b) with the MNR; c) with the SD

a) b) c)
Fig. 10  Starting with the Force Density (FD) method and switch to NR: a) one step of FD; b) three steps of FD; c) ten steps of FD
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g) h) i)

Fig. 11  The BA with four axes of symmetry: a) the NR; b) the NR, ω=0.85; c) the NR and LS, β=0.10; d) SD and LS, β=0.10;
e) the MNR and LS, β=0.3, ω=1.10; f) the NR, ω=1.70; g) the MNR, ω=0.45; h) one step of FD and NR, ω=1.40;

i) NR and LS, β=0.1

As a consequence the smoothing property of the
FD method less attractive basins of attraction are
generated or the fractal nature may even be lost (Figure
11h).

4. SOME ATTRACTIVE FRACTALS

The FFF are interesting, diverse, and attractive, and
can clearly be studied independently of the underlying

formfinding problem. Attractive fractals can be
generated with formfinding algorithms in 2D, omitting
the third variable z and the corresponding equation, and
experimenting with data variations.

Some selected BA with four axes of symmetry are
shown in Figures 11a-11i. The 4 or 8 ancorage points
are symmetrically arranged. The solutions of the
“formfinding problems” are trivial: the equilibrium
position of the free node lies in the centre of
symmetry.

a) b) c)

d) e) f)
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5. CONCLUSION

5.1 Explanation of anomalies in convergence

Although a primary objective to explain the strange
convergence of NR and some other methods for small
systems was achieved, the fractal nature of the
associate BA can only partially explain anomalies in
the course of solving large nonlinear systems, because
it is coupled with other phenomena associated with
large systems e.g. the numerical instability.

5.2 The fractal generation by iterative
method for systems of nonlinear equations

The discovery of FFF was an accidental “side
effect” following a convergence analysis of a particular
system of formfinding nonlinear equations. The fractal
(or at least irregular) basins of attraction have been
anticipated, but the results of the actual numerical and
graphical experiments were fascinating.

Many variations of formfinding algorithms can be
interesting for pursuing fractal experiments. For
instance, it would be probably interesting to play with
the formfinding algorithms in a space with a single free
node in more than three dimensions. Of course, the
described procedures can be used for other systems of
equations, and it can be argued that the systems which
are difficult to solve are probably good candidates for
fractal generation. Different singularities (or near
singularities) of individual functions, the local (near)
singularities of Jacobian matrix, “meandering”
functions with many inflections and other irregularities
usually create difficulties when equations need to be
solved, however this is associated with the expected
generation of interesting fractals.

5.3 De-mystification of the exclusive link
between fractals and complex numbers

It has been shown that assumption alluded to earlier
that the complex arithmetic is necessary for the
generation of analytic fractals is false! Hence, just as
complex numbers may have “magic power”, the
examples in this paper show, that the real numbers are
“magic” too! The analytic fractals can be generated
without complex arithmetic.

6. APPENDIX

A Newton-Raphson method for the single
real equation and generalisation on
systems

For 1D case - individual nonlinear equation f(x)=0
the procedure starts from a chosen value x(0), and ith

iterative step is:
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( )( )
( )( )1i

1i
1ii x'f

xf
xx

−

−
− −= ω (4)

where, ω is the underrelaxation (overrelaxation)
factor 0.0<ω<2.0. If ω<1.0 it is usually called
“underrelaxation”, and if ω>1.0 “overrelaxation”.

For the standard NR method ω=1.0 and it is
omitted from Eq. (4).  f'(x) means derivative of f(x)
with respect to x. The subscript in parentheses denotes
the ordinal number of the iteration step. The
procedure stops when some numerical criterion is
satisfied, for example δn=f(x(n))<ε, where ε
represents an acceptable error in numerical solution.
The value x(n) is then accepted as an approximate
solution to x≈x(n). If the criterion is not satisfied after
n steps (n is a chosen, large enough integer constant),
it can be estimated (with reasonable probability) that
the numerical process diverges. By repeating the
iteration process with different starting values x(0), the
process can converge to different solutions, or it can
diverge.

An advantage of the standard NR method (with
ω=1.0) is the quadratic convergence. It means that in
the vicinity of solution, the error in the ith iteration step
is proportional to the square of error in the previous
(i-1)th step: δ(i)=γδ(i-1) (γ is a positive constant).

The NR method could be generalized for systems
of n nonlinear equations:

f1(x1,x2,...xr,...xn)=0,

M

fr(x1,x2,...xr,...xn)=0, (5)

M

fn(x1,x2,...xr,...xn)=0

Scalar values x(0), x(i), x(i-1), f(x)(i-1) from one-
dimensional case, here are replaced by the vector-
columns x(0), x(i), x(i-1) and f(x(i-1)) and f'(x(i-1)) by
the Jacobian matrix J(i-1). Elements of the Jacobian
matrix are Jr,s(i)=∂fr(i)/∂xs. The NR iteration is:

x(i)=x(i-1)−ω     J-1
(i-1)  f(x(i-1)) (6)

Actual calculation of the inverse of Jacobian
matrix J-1

(i-1) is not necessary, but it is sufficient to
find the product J-1

(i-1)  f(x(i-1)) by solving a system
of linear(ized) equations. The stopping criterion is:
|f(x(i-1))|<ε, where |f(x(i))| denotes a vector norm, for
example the Euclidean norm:

( )( ) ( )( ) ( )( ) ( )( ) ( )( )2in
2

ir
2

i2
2

i1i xf...xf...xfxf +++++=xf (7)

The property of quadratic convergence was also
proved for systems of equations [14].
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B Newton Raphson method on a single DOF
formfinding equation

A formfinding equation with one unknown is:
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where x, y, z (without subscripts) are the unknown
coordinates of the single free node, and xj, yj, zj are
the coordinates of the j th support. If coordinates y
and z are fixed (the only degree of freedom is
translation in the x coordinate direction),
subexpression (y-yj)2+(z-zj)2 is a positive constant
cj. The Eq. (8) is then rewritten as:
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As an illustration an antisymmetric function is
generated by the following set of data: ni=3 (number
of elements), P1=P2=P3=1.0 (prestressing forces),
x1=5.0; x2=0.0; x3=5.0; (y-y1)2 +(z-z1)2=c1=0.5;
(y-y2)2+(z-z2)2=c2=1.0; (y-y3)2+(z-z3)2=c3=0.5.
After substitution in Eq. (9):
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This equation has an obvious real solution: x=0.

The single iteration step can be interpreted as the
“NR function”:

( ) ( )
( )x'f

xf
xxNR −= (11)

Just as the i th step xi=NR(x(i-1)) maps the point
x(i-1) into x(i), the same can be appied to intervals. If
X is an interval, NR(X) is the set of maps of all points
within X (or the map of set). The ratio of the map of
a small interval NR(∆), (∆→0) in comparison with
the original length ∆ is:

( ) ( ) ( )
( )2x'f

x''f
xf

x

xNR =
∂

∂=λ (12)

where x is a point within the interval ∆. Although an
inverse function NR-1(x) is not unique the inverse
mapping is defined: NR-1(x) is a set of points y satisfying
equation NR(y)=x. The geometric interpretation is that
it is a set of abscisas of points on the curve f(x) with
tangents passing through the point x.

Consequently the set of all points on the x axis can
be divided in 3 subsets:

C is the subset of converging points: Starting from
any point inside subset C, the NR iteration converges
to the solution x=0. This subset is 1D fractal.

D is an analogous subset of diverging points
tending to ±∞. The divergent subset is also 1D fractal.

L is the set of cycling points. Starting from a point
in the subset L, iteration can have an initial aperiodic
phase, and then reach a periodic cycle (Figure 13).
Number of different cycles is infinite, but they are
unstable and it is practically impossible to find the
cycle by the NR iteration.

Fig. 13  Two examples of cycles: a) three steps; b) six steps

Fig. 12  Visualisation of the three steps of NR method for the single equation
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It is evident that points NRk(x) for a positive or
negative integer k must belong to the same subset as
the point x. The m-step cycles can be found by solving
equations NRm(x)=x, where NRm(x)=x means
NR(NR(...(x))) m times.

For example, to determine the values of the two step
cycles the equation NR2(x)=x must be solved (for the
antisymmetric illustrative example it is easier to solve
NR(x)=-x).

The important antisymmetric two step cycles are:
A1, A2, A1,..., and B1, B2, B1,..., where A1=-A2=1,0129
and B1=-B2=6,0213 (Figure 14a).

The open interval inside the first of these cycles
Xc1=〈A2<x<A1〉 is the classical (continuous) part of the
basin of attraction (“inner basin of attraction”),
coloured green on the Figure 14a. The points from this
basin are convergent.

In analogy the positive and negative part outside
the cycles Xd1=〈-∞<x<B2〉 Λ 〈B1<x<∞〉 are classical
(continuous) parts of basin of repulsion, here coloured
red. With an initial value from this set the NR iteration
oscillates between left and right part with the
increasing amplitudes. Every point from remaining
intervals Xu〈B1<x<A1〉 and Xu'〈A2<x<B2〉 belong to
one of sets C, D or L.

In the Figure 14b the points of the convergent
subset Xc2 (second generation) are also coloured green.
This is a subset of convergent points from Xu and Xu'
which satisfy the relation NR(Xc2)=Xc1, i.e. the set of

Fig. 14  Basins of attraction and repulsion: a) classic solution; b) and c) generation of additional basins: b) first generation; c) first
and second generation (symbols are omitted)

points which after one NR iteration step are mapped
in Xc1. It is interesting to observe that the NR iteration
starting from a special point from each interval
converges to the exact solution in one step.

The analogous, divergent subset Xd2 is coloured
red. This is a subset of divergent points from Xu and
Xu' which satisfy relation NR(Xd2)=Xd1, i.e. the set of
points which after one NR step are mapped in Xd1.

In the Figure 14c the points of the convergent
subset Xc3 are again coloured green. This is a subset of
points from Xu and Xu' which satisfy relation
NR(Xc3)=Xc2, i.e. the set of points which after one NR
step are mapped into Xc2. The analogous, divergent
subset Xd3 is coloured red. This is a subset of
convergent points from Xu and Xu' which satisfy
relation NR(Xd3)=Xd2, i.e. the set of points which after
one NR step are mapped in Xd2. Parts of x axis, not
coloured in Figure 14c belong to the third or higher
generation. This series of convergent and divergent
subsets is infinite.

The self-similarity can be easily deduced:
An interval P1 is chosen and its map P2=NR(P1).

If the mapping for the whole interval is not continuous
or unique, a subinterval can be chosen with continuous
mapping. On the interval P2 a pattern of convergent-
divergent cyclic points is noticed. This pattern must be
also (inversely) mapped onto P1 - it is similar but
distorted. The analogous deduction is also possible in
more dimensions.

a) b)

c)
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FRAKTALI I 'FORMFINDING' - ÈAROLIJA S REALNIM BROJEVIMA

SA�ETAK

Postupak odreðivanja ravnote�nog oblika mre�aste konstrukcije od prednapregnute u�adi (engl. formfinding),
mo�e se provesti pomoæu klasiène Newton-Raphsonove iterativne metode. Konvergencija strogo ovisi o izboru
poèetne aproksimacije, koja mora le�ati unutar unaprijed nepoznatog podruèja konvergencije. Iz iskustva je poznato
da je to podruèje nepravilno i diskontinuirano pa se naslutilo da bi moglo imati svojstva fraktala. Da bi se hipoteza
potvrdila i toènije razjasnila, proveden je niz numerièkih pokusa na vrlo pojednostavljenim primjerima mre�a.
Nacrtani presjeci dobivenih trodimenzionalnih fraktala su vrlo zanimljivi i raznoliki. Time se pokazalo da fraktali
mogu nastati pri operacijama samo s realnim brojevima. Nakon toga provedeni su i pokusi uz pomoæ drugih
iterativnih algoritama, takoðer s vrlo zanimljivim rezultatima, kako sa stanovi�ta rje�avanja sustava nelinearnih
jednad�bi, tako i sa stanovi�ta fraktalne geometrije. Oèekuje se da bi pokusi s iterativnim metodama iz ovog rada
(osim metode �gustoæe sila� specifiène za formfinding problem) i slièni pokusi s drugim metodama mogli pomoæi
razja�njavanju pona�anja mnogih sustava nelinearnih jednad�bi.

Kljuène rijeèi: konstrukcije od mre�e u�adi, odreðivanje oblika, podruèje konvergencije, fraktali, iterativne metode,
nelinearne jednad�be.
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