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SUMMARY

This paper presents a quadrilateral thin plate bending element with a full compatibility of displacements and
rotations at the nodes. A four-node finite element with independent translational and rotational degree of freedom
(DOF) at each node is used. The shape functions for the approximation of the displacements and rotations are
different and they are both determined from a complete polynomial of the fourth order. After satisfying conditions
for the value of the functions and their first derivations at the element nodes, the shape functions consist of a fixed
part satisfying the homogeneous differential equation and additional modes. The first one ensures high accuracy of
the solution for the finite element with parallel opposite sides (rectangular, parallelogram). The additional modes in
the shape functions of the rotational angle can be used for improving a solution in an arbitrarily quadrilateral
finite element mesh. Described procedures ensure a high order of interpolation for the plate displacement. In both
cases finite element possesses twelve global degrees of freedom. The additional unknowns in the rotational shap

functions of an arbitrarily quadrilateral element are eliminated on the element level.

Key words thin plate, quadrilateral finite element, independent rotational DOF.

1. INTRODUCTION
The finite element models based on the
displacement method are very popular in engineering.
However, thin plate bending elements [1, 2] based on
the Kirchhoff theory may cause unconvergence
problems due toCl continuity requirement.
Quadrilateral displacement element with 12 degrees
of freedom (DOF) based on a polynomial expression
does not satisfy th€l continuity requirement.
Therefore, 12 DOF plate element based on the
displacement method with the weaker continuity
requirement, called a non-conforming element [3, 4],
has become a challenge to many researches.

Many alternative ways for improving the behaviour
of quadrilateral thin plate elements in distorted mesh
have been developed. The most significant of them are:

hybrid stress element [5], discrete Kirchhoff element
[6], generalized conforming element [7] and refined
non-conforming element [8].

An alternative way is modelling based on the
Reissner-Mindlin theory instead of Kirchhoff theory. In
this case onlyC0 shape function continuity is required,
hence an interpolation field is more easily constructed.
In most plate elements using Reissner-Mindlin
assumptions, the interpolation used for the transversal
displacements and the rotations involves the
independent representation of each variable by its nodal
values, usually with identical interpolations. To ensure
a higher order of expansion for displacement, the
concept of linked interpolation [9] of the displacement
and rotations is introduced. In the context of the thick
plate, quadrilateral elements employing linked
interpolation have been developed in Refs. [10-12].
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An independent representation of translational and wheren, is the shape function with a unit translational
rotational field and linking them can be also used for displacement at thieth node, whilen;4 andn;q are the
improving the accuracy and convergence of a shape functions with a unit rotational angle around
guadrilateral thin plate element. axesé andn, respectively.

This paper presents a quadrilateral four-node thin The shape functions for the approximation of the
plate bending element with a full compatibility of displacement fieldn; (i=1,...,4; j=w,¢,6) are
displacements and rotations at the nodes. The elementdetermined from a complete polynomial of the forth
has independent translational and rotational degrees oforder with 15 terms:
freedom at each node. This is in accordance with a
unified approach to structural system modelling [13]. Njj =C1 +Cx¢ +C3N + 0452 +C5én + 06'72 +
A similar element with independent translational and + 53 + 52 ol 2, 3, 54 +
rotational DOF and Hermitian shape functions has €7 Cgo 11+ CoslT™ ¥ Caofl ™+ C1y
been developed in Ref. [14]. +C10E 30 + C13E 2N +c1én® +cen? ()

The shape functions for the approximation of the

displacement field in this paper are determined from a The Shape functions associated with each finite
complete polynomial of the fourth order. The different

interpolation is used for the translational and rotational element node have to satisfy three conditions, the function
part of the displacement field. After satisfying the o -
COﬂdItIOﬂS fOI’ the Value Of the funCtionS anq the|r fII’St Va'uenij and the Va'ues of |ts denvaﬂon.sl and L i
derivations at element nodes, shape functions consist on
of a fixed part satisfying the homogeneous differential - after satisfying these conditions, the shape functions are
equation and additional internal modes. Two types of
shape functions are tested on examples with a regular gjven by the following expressions [15]:
and irregular finite element mesh: the shape functions
which satisfy the homogeneous differential equation n. = N®%°® =N¢%°® + N€a® (4)

. . . ij vy u“u
of the thin plate bending (SF1) and the shape functions e . ) ) .
with additional internal modes in the functions of WhereNy is a matrix of the functions at the finite
rotational angle which depend on the finite element €lement nodesq, is a vector of the displacements at
geometry (SF2). the finite element nodes, whil&l  and aj are the
matrix of additional functions and displacements inside
a finite element. Displacement are the internal
degrees of freedom which can be eliminated at the level
of the finite element. After satisfying the conditions at
The displacement fielg of the loaded plate, the nodes, three unknown parameters are obtained in

according to the thin plate theory, is determined if the the case of the complete polynomial of the fourth order.
deflection of the platev is known at all points. The  The shape functions are given in following form:
displacement field can be represented according to the
equation:

2. APPROXIMATION OF THE
DISPLACEMENT FIELD

nj =n° +a;n’ +a,n® +azn® (5)
The part of functions® has a unit displacement in

(w0 the shape functions of translational displacement and

%JZE a unit rotational angle in the rotational shape functions
pP=w=Nu :[vasz--,Nn]D; 0 @) at the observed nodes, while the displacements and

0O 0 rotations are zero at other nodes. The functidns?

Wn 0O and n3 posses an internal displacement while the

displacements and rotations at the nodes are zero.

The shape function of the translational
displacementn,,,, after satisfying conditions for the
function value and the values of its first derivations, is
given by the Eq. (6).

Due to the stiffness orthogonality between the
additional functionsl, n2 and n3 inside the finite
element itself, and also due to the stiffness
orthogonality between these functions and functions
nO, it is not possible to influence the solution at the
nodes by introducing additional functions. Therefore
the shape function of the translational displacement is
u =[w ¢; &1, N; =[niw,ni¢ ,nigj (2 equal to functiom® (Eq. (7)).

whereN is the matrix of shape functions ands the
vector of nodal displacement.

In this paper the finite elements with three degrees
of freedom independent of each other are used, one
translational displacemew; perpendicular to the plate
mid-plane and two rotational angl¢sand & around
two orthogonal axes located at the plate mid-plane. The
unknown displacement vectar at each node (i=1,

..., N of the plate element and the corresponding vector
of the shape functionbl; can be represented as
follows:
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The shape function of the rotational angle, 4, after whereA; is an area which belongs to each element
satisfying conditions for the function value and the node, whileA is the area of the whole element. The
values of its first derivations, is given by the Eq. (8).  areaA; is generally different fromA/4 for the arbitrarily

Between the additional functions, oy is non- quadrilateral elemeni(zA/4).
orthogonal to the function® and it can be used for
improving a numerical solution of the displacement at n 0
the nodes. The same conclusion is valid for the shape , @ [
functionnqg. (¥ (3%
In this paper the solution of thin plate problems is y }b As | Ag .
analyzed with two types of the shape functions: the ¢ AL | A
shape functions satisfying the homogeneous Cabh———a—— o)

differential equation of the thin plate bending (SH1) , , .1)

represented by Eqs (9) and the Shape functions with a) Transforming of the squaredm coordinates to the rectangular in x-y coordinates
additional mode in the functions of the rotational angle
(SH2) represented by Egs. (10), where the coefficient
ais eliminated at the finite element level.

The coefficienta can be determined using global
coordinates of the quadrilateral element nodes. Figure £
1 shows the transformation of a square element from
the local €-n) coordinate system into a rectangular
element (Figure 1a) and into an arbitrarily quadrilateral 1)
element in the gIObaI Coordinate System. The |0ca| b) Transforming of the squaredm coordinates to the quadrilateral in x-y coodinates
coordinate axi and n divide the rectangular (and
parallelogram) into four equal parts with aréasA/4, Fig. 1 Transformation of the four-node quadrilateral element

n
(-1,1) 1,1)
(Eén)

(-1

€)= S -3¢ -3 + a8 +£5 40~ £ -0+

(6)
+agl(1—252+54)+a‘%’3”2(1—52 —n2+fznz)+a‘é"3(l—2nz+q4)
€=t -an s agn e +n® - -an?) (7)

nm(f.n)=;(1—£—n +&n —r72+£r72+n3—6173)+

(8)
+agl(1‘252+54)+a22(1‘52—’72*'52’72)*'agS(l—Z?2+ﬂ4)
€)= (2-36 -3 +agn + € +n° - €% -en?)
nm(f,n)=;(1-£-n+fn-nz+Er72+n3—6r73) (9)
o (€)= S (-8 -+ -g2 + % +6° %)

€M)= 2 23 -3+ 48 + €2 +n° -5 -én°)
nm(f,n)=;(1-f-n +En-l72+El72+n3—fl73)+2(1—€2-n2+£2n2) (10)

1

nw(f,n)=8(1-f-n+fn-52 +&n+¢&3 -€3n)+2(1—€2 -n? +62172)
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A
Ratio ﬁ can be used for improving the

approximation of the displacement field and numerical
solution for an arbitrarily quadrilateral element.

Coefficienta is given by the following expression:

A/ 4 (11)

The additional part of the rotational shape functions
is multiplied with a half length of the element side 1/2
to ensure unit rotations of the shape functions in the
global coordinate system.

If the finite element is rectangular or parallelogram,
the value of coefficient is zero and the shape
functions satisfy the homogenous differential equation
of the thin plate bending.

3. TRANSFORMATION FROM THE
LOCAL TO THE GLOBAL
COORDINATE SYSTEM

The equation of the bilinear coordinate
transformation is used for transforming the arbitrarily
guadrilateral element in the globady) coordinate
system into a square element in the loéaj)(system
(see Figure 1):

4 4
X= ;nio(fﬂ)xi Y= ;nio(f,n)Yi (12)

where:

no =5 (1+&&) (1+nin)

(El i1 ) = ( _1!_1)! (62 P ) = (1’_1)!
(&3.n3)=(11), (§4.n4)=(-11)
The shape functions of the four-node finite element

(13)

are given in the local coordinate system. The second-order

It is not possible to give an explicit expressior of

and n as a function ofx andy. The first-order

95 9 dn dn
derivatives X'y K can be obtained from

the first-order Jacobian matrix. The second-order
026 026 025 520 0—;2,,] 02,7

o A o o K oy

cannot be given explicitly. If the mapping from a

derivatives

square element in the local system to a rectangular
element in the global system is performed, the second-

order derivatives are zero. Therefore the derivatives

2 2 2
J 2n J n on can be easily calculated using the
oX

0~y2

first-order Jacobian matrix.

The mapping of the second-order derivatives form
a square element to an arbitrarily quadrilateral element
includes the derivation of the functions given in
implicit form. The shape functiortsare the functions
of two variable andn, which are the functions aof

on
andy. Therefore we can write Eqgs. (15) and obtg’zn
—— as the functions of, n, — and Ll if the
oy 0¢ on
determinant of the first-order Jacobian matrix is

d°%n

different from zero,
22n
and -~ can be obtained from the system of Eqs.
oy e o"’
n n

16) while the derivatives; =~ and — 5 can be

Cartesian derivatives in the global coordinate system are Obtained from Egs. (17).

necessary to calculate the stiffness matrix element and

bending and twisting moments. The first-order Cartesian

derivatives can be calculated from the first-order Jacobian

matrix. The procedure for calculating the second-order
derivatives is presented in this section.

The second-order Cartesian derivatives of the shape ~—

functionsn=n(¢,n), if x=x(&,n) andy=y(¢,n) are
given in Egs. (14).

, d’n _d°n
The assumption is thatm 3yo"'x The
0
expressmns DBXD on é%m df%g and

17}

an Eare given in Egs. (18).

L 92 Bdig 0%n g€ an 0 ol , no%  ana’n

X?  9E200Xx D dééné‘xw anzmém o"é x? 617 ox?

L %g 0%n oo o n%EZ no%E  ond’n (14)
% &% oy 0Ednr?y0y on?bdy o9& gy?>  dn gy?

d°n 92 nog of d2n € an L9, o ndndn+dn(92£+dn02r7

My T og2 axdy " 9gn Cox dy aydx%anzaxay OF oxdy o vy
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gn_dnox ondy . on_dnox dndy
0F  OxJOE yOoE ' dn oxdn dydn

o o

X[ 32nd<+02ndy . OXO_ 3°n & 0ndy (16)
OF  aROE aNOE ' on  adon adyan

a%%dndx dndy_d%%dndx dn&y

(15)

0 KK 70 | an  oyoxan oy o ()
9 | 0%no¢ dndr]H_dxé’E dyd{&dndr] nonH a%xan _ d%yon
GECPXO 982 oX awa 080N ox  0Edn dy H 0Edn dx  dn oxH 9Edn ox  9En dy
JB@B:dnaf andEH 9°x 9& dyd{&_d non , onog | 0%xadn _d%yan
onDox0 0&dn ox  JE oxH 9Edn ox afanayH anzax on oxH 9&n ox  d&on dy (18

d%xon _ 9%y on
07{07!] ox  déon oy
92x on dzy on
| 080N ox  9&n dy

%Ednd{ dnanH_axdE dyd{&dn&n anan
%3 PE2dy OEOyH 9&nox od&dndyH o&ondy ondy

d%%dnd{ L N0 0%x 08 _ 9%y o[ 9’nan  noE

ogon oy " oy seonox senayd a2y ondy

\III\II\II[III\II\I\
L] OO L] o

Finally, the second-order Cartesian derivatives whereJ, is the second-order Jacobian matrix:
d%n 9°n a°n

22 dyz and oxdy can be calculated by solving % E2 %Ez E
the system of equations (16) and (17). 5’5 5’5 E
The described procedure can be given in the matrix oxoy [ (22)
form as follows. The relation between the first-order dn dn O
derivatives of the shape functianin the local and E@@ ﬂ ox oy &ﬁg
global coordinates is: é@f on 0 on df on  Of (9,75
Dt?n D
D‘J E while a and 8 are coefficients which depend on the
0“ ! (19) global coordinate of the finite element nodes:
Eé'n E R
. . . . _0°X Erh _
whereJ; is the first-order Jacobian matrix: 7 4 Xi —f(X —Xo + X3 — X4)
eon =1 23
x oy0 0%y _dén (23)
T B= My =y v, +ys - v4)
Jl_gﬁ &jg (20) don & 4 7' 4
®n onH The determinant of the second-order Jacobian
The relation between the second-order derivatives is; Matrx 1S:
Ay XK 3
240 0321 0 J, = % =J; (24)
€% 0 Daxz oo 0 O
B2n8 . BB B o B When |J,|#0, the inverse matrix of the second-
DﬁB n2 0 0=J, DDdyz E+ 5}@ .\ B@E (21) order Jacobian matrix is:
02,0 0520 H ox oyd
é ng 0 nE
Boén B @W
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O
BB 2
dEdr] O
x
l_
leﬂ%g %g aéan 5(25)
D_(}xﬂy XA Ky, Xdp
d on on

0§ 0E JE an  an 05%

Finally, the second-order Cartesian derivatives are:

05240 O d°n O
[ — O ey 0
0% O O 73 0
B92nB_ ., 4 H 32n H
O 0=J270 — 0 (26)
Oy 0O 0 on 0
42,0 0,2 0
St LALLM LS
Eoxdy 5 Foéon 0 ang

where:

o P B T P

If the finite element is a parallelogram, the values
of coefficients arer'=£=0.

4. NUMERICAL EXAMPLES

The four-node plate element with independent
translational and rotational DOF is tested on a few
examples. The results of the computation are compare
with the analytical solution and also with those
obtained with some other plate finite elements.

4.1 Bending of square plate - rectangular
elements

The central deflection and the central bending
moment computed with the element developed in this
paper are represented in Tables 1-3 for several meshes.
The numerical solutions of the deflection and the
bending moment converge to the exact solution for all
subdivisions with the increase of the degrees of
freedom. The accuracy of the numerical solution of the
deflection is higher than the accuracy of the bending
moment which is a characteristic of the displacement

method.

Table 1 A square plate uniformly loaded;0.3

Mesh Simply supported plate Clamped plate
w M, w M,
2x2 0.004185 | 0.06990 | 0.001447 | 0.04514
4x4 0.004076 | 0.05048 | 0.001374 | 0.02799
8x8 0.004066 | 0.04850 | 0.001295 | 0.02406
12x]2 0.004064 | 0.04816 | 0.001279 | 0.02341
16x16 0.004062 | 0.04801 | 0.001270 | 0.02318
Exact [16] | 0.004062 | 0.04790 | 0.001260 | 0.02310
Multiplier | pa*/D pa’ pa’/D pa’
Table 2 A square plate with a concentrated central [va8,3
Mesh Simply supported plate Clamped plate
w M, w M,
2x2 0.01389 0.2478 0.00625 0.1950
4x4 0.01220 0.3017 0.00615 0.2511
8x8 0.01180 0.3731 0.00577 0.3199
12x]2 0.01170 0.4138 0.00569 0.3602
16x16 0.01165 0.4436 0.00566 0.3899
Exact [16] | 0.01160 - 0.00559 -
Multiplier | Pa’/D Pd’ Pd’/D Pd’

The numerical displacements fb§x16 mesh are
compared with the exact solutions. The maximum
displacement discrepancyli25%for a clamped plate

A simply supported, clamped and corner supported with a concentrated central load. The discrepancy in
square homogeneous isotropic plate with a side length other examples is lower, while the deflection for a

a, subjected to the uniformly distributed loadnd the
central concentrated lo&] is analyzed.

94

simply supported uniformly loaded plate is equal to the

exact for16x16 mesh.

Table 3 Corner supported square plate with a uniform loag=p,3

Mesh Number of Number of Point 1 Point 2
elements nodes w My w My
4x4 16 25 0.0165 0.1478 0.0262 0.1103
8x8 64 81 0.0171 0.1497 0.0277 0.1114
16x16 256 289 0.0173 0.1498 0.0280 0.1114
Exact (Marcus) [17] 0.0180 0.154 0.0281 0.110
Exact (Ballesteros, Lee) [18] 0.0170 0.140 0.0265 0.109
Multiplier pa’/D pa’ pa’/D pa’

Note: Point 1- center of side, Point 2 - center of plate

ENGINEERING MODELLING 16 (2003) 3-4, 89-98



Z. Nikoli¢, A. Mihanovi¢: Thin plate quadrilateral element with independent rotational DOF

The error of the numerical solutions for the corner are: ACM (Zienkiewicz, Cheung - displacement non-
supported plate deflection is 0.35% with respect to the conforming), Q19 (Clough, Felippa - displacement
exact solution [17], while the error of the bending conforming), M (Fraejis de Veubeke - equilibrium),
DKQ (Batoz, Ben Tohar - discrete Kirchhoff), HTQ3
(Jirousek, Lan Guex - hibrid), H5 (Cook - hibrid) and
supported and clamped square plate with a uniform TP-SF1 (element presented in this paper with shape
load are compared in Figures 2 and 3 with various functions satisfying a homogeneous differential
rectangular elements. The results for comparing the equation of the thin plate bending).

moment is1.27%

The errors of the central deflectiog of a simply

error are taken from Ref. [19]. The analyzed elements

Error in w, (%)

-15

(C) Complete load vector
(S) Simple load vector

Fig. 2 The central displacement error for a simply supported uniformly loaded square plate

A Error in w, (%)
sk
20 g
- \(\‘@
15} \;\/\,&/P, g
p‘&y\\{
10

3 4 5 6

» Mesh density M
7 8 910

Fig. 3 The central displacement error for uniformly loaded clamped square plate

3 4 5 6 7 8
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4.2 Twisted ribbon - single element test

Table 4 A skew simply supported plate under uniform load

The twisted ribbon is a test that shows the effect of Mesh wid; M2 My 2
the element aspect ratio. The twisting moment is applied 4x4 0.3480 1.532 0.786
by corner couples or by corner moments as shown in 8x8 0.3819 1.804 1.036
Figure 4. The plate is usually modeled by one 16216 0.3938 1838 1077
rectangular element. Benchmark values were obtained Iy 03951 560 1078
from a mesh of 16 rectangular Kirchhoff elements with - : -

16 DOF each. Many types of elements falil this test. O4BL(32x32) [10]| 042352 1.953 1.140

The two loadings produce the same displacement |Exact - Morley [21]|  0.40800 1.910 1.080
for the element proposed in this paper. The obtained Multiplier ¢/=pa®/1000D | c;=pa’/100 | c;=pa’/100

solution is compared in Figure 5 with solutions
obtained with one discrete Kirchhoff quadrilateral
element [20] and with benchmark values (16 Kirchhoff
elements with 16 DOF) [20].

It is shown that the numerical solution converges
to the exact one [21] with the increase of the degrees
of freedom. The error of the deflection 82x32 mesh

jsw3 is -2.4% with respect to the exact solution, while the
. error of the bending moment is -2.6 fdy and -0.2%
4=1 for My. The results are also compared to those obtained

by a quadrilateral four-node finite element Q4BL [10]
for 32x32 mesh.

Fig. 4 Twisted ribbony=0.25 . .
9.4 W ' v 4.4 Bending of square plate - quadrilateral

It is shown that the increase of the ratio of the elements

rectangular element sides has no influence on the

oI ) A simply supported square plate under the
solution in this example. Py Supp d P

uniformly distributed loadp is analyzed using
guadrilateral elements. Two different meshes shown in
Figure 7 and two shape functions (SF1 - satisfying
%0 homogeneous differential equations and SF2 - shape
functions of rotational angle with additional mode) are
used to assess the effect of mesh distortion on the
accuracy.

wx10’

40 . .
4[ .~ 1 —— This paper (both loadings)

- Discrete Kirchhoff element

30 = / > . (both loadings)
;:/E/ - - - Benchmark -Ecomcr moments
2 5 _
L~ ’/
. i . | |
2 4 6 8 0 12 / / I] // // // /I
| |
I I

Fig. 5 Deflection of the twisted ribbon / /

Benchmark - corner forces / /

T

4.3 A skew simply supported plate \ \\\\H
WU

A skew simply supported plate with a uniformly / ///////H
distributed load is analyzed. The discretization of the / / / / / / ,’

4x4

plate is shown in Figure 6. The results of the central
deflection and central bending moment are given in
Table 4 and compared with the exact solution [21].

Mreza Il

Fig. 7 Meshes for a simply supported plate

\If::;goo Table 5 Square plate uniformly loaded, wjw, v=0.3
L=100 Mesh | Number Mesh 1 Mesh 11
B=30° p=1 ofdof | SFI SF2 | SFI SF2
K - " 4x4 FE 4x4 75 0.959 | 1.015 | 0.963 | 1.025
8x8 243 0.973 1.007 | 0.960 | 1.014
Fig. 6 A skew simply supported plate under uniform load 16x16 867 0.983 1.005 0.958 1012
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The numerical solution of the deflection is shown [3]
in Table 5. The central deflection error of the plate is
analyzed forl6x16 finite elements. The shape
functions SF1 give the central deflection error of -1.7% [4]
for mesh | and -4.2% for mesh Il . The error obtained
with SF2 is 0.5% for mesh | and 1.2% for mesh Il. Itis
shown that the introduction of additional modes in the
shape functions of the rotational angle improves the [5]
numerical solution in arbitrarily quadrilateral elements.

5. CONCLUSIONS [6]

An arbitrarily quadrilateral thin plate finite element
with independent translational and rotational degrees of [7)
freedom and different shape functions for the
approximation of the displacement and rotations has
been presented. Two types of the shape functions are
analyzed: the shape functions which satisfy the [8]
homogeneous differential equation of the thin plate
bending and the shape functions with additional internal
modes in the functions of rotational angle which depend
on the finite element geometry. The procedure for 9]
transforming the second-order derivatives of the shape
functions from the local to the global coordinate system,
which is necessary for evaluating the strain and the 1]
stiffness matrix, is developed. Several examples are
analyzed to show the quality of the numerical solution.
The numerical solution in examples with regular
discretization (square and rectangular finite elements)
converges very fast to the exact solution. Increasing the [11]
ratio of rectangular element sides has no influence on
the numerical solution. The convergence of the
numerical solution for discretization with a
parallelogram and arbitrarily quadrilateral finite
elements is also achieved. It was shown that the 15
additional modes in the shape functions of the rotational
angle improve a solution for discretization with
arbitrarily quadrilateral elements. [13]
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CETVEROCVORNI KONACNI ELEMENT TANKE PLOCE S
NEZAVISNIM ROTACIJSKIM STUPNJEVIMA SLOBODE

SAZETAK

U ovome radu prikazan je cetveroc¢vorni potpuno kompatibilan konacni element za analizu savijanja tankih
ploca. Upotrijebljeni element ima nezavisne translacijske i rotacijske stupnjeve slobode u svakom cvoru. Bazne
funkcije za aproksimaciju polja pomaka i zaokreta su razlicite, a jedne i druge se odreduju iz potpunog polinoma
Cetvrtog stupnja. Nakon zadovoljenja uvjeta za vrijednost funkcije i njenih prvih derivacija u ¢vorovima, bazne
funkcije se sastoje od nepromjenljivog dijela koji zadovoljava homogenu diferencijalnu jednadzbu ploce i dodatnog
promjenljivog dijela. Nepromjenljivi dio osigurava visoku tocnost rjeSenja za konacne elemente s paralelnim
nasuprotnim stranicama (pravokutnik, paralelogram). Dodatni promjenjivi dijelovi u baznim funkcijama kuteva
zaokreta mogu se upotrijebiti za poboljSanje rjesenja kod mreze nepravilnih cetverocvornih elemenata. Opisani
postupak osigurava visok red interpolacije polja pomaka ploce. U oba slucaja konacni element ima 12 stupnjeva
slobode. Dodatne nepoznanice u baznim funkcijama zaokreta eliminiraju se na nivou elementa.

Kljuéne rijeci: tanka pl@a, cetverocvorni konacni element, nezavisni rotacijski stupnjevi slobode.
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