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SUMMARY
The three-dimensional inverse problems of gravimetry and magnetometry for finding the interfaces between

mediums from the gravitational and magnetic data are investigated. We assume that a model of the lower half-
space consists of three mediums with constant densities which are separated by the surfaces S1 and S2 to be
determined.

The inverse problems are reduced to nonlinear integral equations of the first kind, hence these problems are ill-
posed. After discretization of the integral equation we obtain a system of nonlinear equations of large dimension.
To solve this system, we use the iteratively regularized Gauss-Newton method. To realize one step of this method,
we have to solve a system of linear algebraic equations with full matrix. For this aim, parallel variants of the
Gauss, Gauss-Jordan and the conjugate gradient method are applied.

Their realization has been implemented on the Massively Parallel Computing System MVS-1000. The analysis
of the efficiency of parallelization of the iterative algorithms with different numbers of processors is carried out.
Parallelization of the algorithms decreases significantly the time of solving the problems. The interfaces S1 and S2
obtained by the Gauss-Newton method correspond to the real geological perceptions about the Ural region under
investigation.

Key words: Parallel algorithms, gravimetry, magnetometry, parallelization.

UDC 551.241:528.026:550.38:519.61
Original scientific paper

Received: 22.12.2003.

Stable parallel algorithms for solving the inverse
gravimetry and magnetometry problems

Elena N. Akimova and Vladimir V. Vasin
Institute of Mathematics and Mechanics, Ural Branch of Russian Academy of Sciences,

S. Kovalevskaya str.,16, Ekaterinburg, 620219, RUSSIA
e-mail: aen@imm.uran.ru, vasin@imm.uran.ru

1. BASIC EQUATIONS AND PRELIMINARY
DATA PROCESSING

We assume that the gravitational anomaly is formed
by the deviation of the desired surface S from the
horizontal plane z = H (Si (i = 1, 2), H1 = 2, H2 = 10
in our case).

Then, in the Descartes coordinate system, the
gravity equation with respect to the unknown function
z = z (x, y), which describes the interface, is reduced
to the two-dimensional nonlinear integral equation:

[ ]
( ) ( ) ( )[ ]

( ) ( )[ ]
( )y,xF'dy'dx

H'yy'xx

1

'y,'xz'yy'xx

1fzA

2
1222

b

a

d

c 2
1

222

=
⎪⎭

⎪
⎬
⎫

+−+−
−

−
⎪⎩

⎪
⎨
⎧

+−+−
≡ ∫ ∫σ∆

(1)

where f is the gravitation constant, ∆σ is the density
jump on the interface and F(x,y) is the anomalous
gravitational field.
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The magnetometry equation has the following
form:

[ ] ( )

( ) ( ) ( )[ ]

( ) ( )[ ]
( )y,xG'dy'dx

H'yy'xx

H

'y,'xz'yy'xx

'y,'xzJzB

2
3

222

b

a

d

c 2
3

222

=
⎪⎭

⎪
⎬
⎫

+−+−
−

−
⎪⎩

⎪
⎨
⎧

+−+−
≡ ∫ ∫∆

(2)

where G is the anomalous magnetic field and ∆J is the
averaged jump of the component z of the magnetization
vector.

To select the anomalous gravity and magnetic field,
which serve for the right-hand sides of Eqs. (1) and
(2), we imply the following technique (see Ref. [1]).

It is commonly accepted that the field recalculation
upward to a level z=+H practically eliminates the
effect of anomaly-forming objects, located up to the
depth z=−H. By geological evidence, the field sources
foreign to our analysis are located more deeply than
z=−H (H=2 km or H=10 km). Therefore, the measured
field was continued upward to the level z=H.

The stronger distortions in this procedure occur
near the boundary of the domain, hence the integration
is done over a finite area. To diminish these distortions,
the values of a function that is the solution of the plane
Dirichlet problem were preliminary subtracted from
the measured field. In the investigated domain this
function satisfies the two-dimensional Laplace
equation and coincides with the given field on the
boundary of the domain.

In our opinion, this function can be used as the field
of the lateral sources. For recalculation upward, the
Poisson formula for a subspace was used:
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To get rid of the sources in the horizontal layer from
the ground surface to the level z=−H, the field
recalculated upward was then continued downward to
the depth z=−H. In this case we solve the integral
equation:
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to find the unknown function ω(x,y)=U(x,y,−H). Here
the function U(x,y,H) is given. In order to stably solve
this equation we used the Lavrentiev regularization
method of the form:

(K+αI)ω = U
for a suitable regularization parameter α>0.

Since the singularity of the function obtained lies
below the plane z=−H, this function can be interpreted
as the field of deep sources.

The sum of this field recalculated on the ground
surface and the solution of the Dirichlet problem was
used as a field of lateral and deep sources (extrinsic
sources). The difference of the measured field and the
field of the extrinsic sources was used as the gravity
effect (the function F(x,y) in Eq. (1)) of sources located
in the horizontal layer from the ground surface to the
depth z=−H.

The similar procedure was used for selecting the
anomalous magnetic field (the function G(x,y) in Eq. (2)).

2. ITERATIVE METHOD FOR SOLVING
THE NONLINEAR SYSTEM

After discretizing the Eqs. (1) and (2) on the grid
n = M × N and approximating the integral operators
A and B by the quadrature formulas, we obtain a
system of nonlinear equations of the form:

An [z] = Fn (3)
For solving this system the iteratively regularized

Newton method [2] is used:

zk+1 = zk − [A'n(zk) + αkI]-1 (An(zk) + αkzk − Fn) (4)

where A'n(zk) is the Jacobi matrix calculated at the
point zk, I is the identity operator, αk is a sequence of
the positive parameters and Fn is a vector
approximation of the function F(x,y) (or G(x,y)).

The iterative method of the Eq. (3) can be written
in the following form:

Akzk+1 = Fk (5)
where Ak = A'n(zk) + αkI is an n×n matrix, Fk = Akzk−
(An(zk) + αkzk − F) is an n-dimensional vector.

So, for finding the next approximation zk+1 in
Newton method, Eq. (4), it is necessary to solve the
system of linear algebraic equations, Eq. (5), with full
n × n matrix.

The careful analysis showed that, for a
acceptable starting point z0 and parameters αk, the
matrix Ak has n different eigenvalues for all realized
iterations (k = 1,2,...,5).

This implies that the corresponding eigenvectors are
linearly independent and the matrix Sk whose columns
are eigenvectors has the inverse (Sk)-1. Hence, the matrix
Ak can be represented in the form [3]:

Ak = SkΛΛΛΛΛk(Sk)-1

where ΛΛΛΛΛk is the diagonal matrix. From this formula it
follows that the matrix Ak (k = 1, 2,..., 5) is invertible.

Moreover, for problem described by Eq. (1) the
condition number cond(Ak) of the matrix Ak varies
within the intervals 2.8≤cond(Ak)≤727 for the interface
S1 and 1.8≤cond(Ak)≤2642 for the interface S2. For
problem described by Eq. (2) the condition number
varies within the intervals 1.1≤cond(Ak)≤405 for the
interface S1 and 1.2≤cond(Ak)≤328 for the interface S2.
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This guarantees the stability of calculations under
the realization of the iterative process given by Eq. (4)
and the monotone decrease of the Newton method
errors ∆k=⏐⏐zk − z⏐⏐.

The further analysis showed that, in fact, for
method given by Eq. (4) the conditions of the Newton-
Kantorovich theorem [4] at the iteration points zk were
fulfilled, which implies practical convergence of this
method.

It should be noted that if an operator A is monotone,
then for any αk>0 the operator [A'(z)+αkI]-1 exists and
is bounded, and under some conditions method given
by Eq. (4) converges to a solution of the equation
A(z) = F for αk→0, k→∞ (see Ref. [2]). It is known
[5] that the gravimetry operator is not monotone, so
the convergence theorem has not been proved.

3. GAUSS, GAUSS-JORDAN AND
CONJUGATE GRADIENT METHODS.
PARALLEL REALIZATION

So, for finding the next approximation zk+1 for each
iteration of Newton method given by Eq. (4) it is
necessary to solve Eq. (5). The problem given by Eq. (5)
can be solved by the Gauss or Gauss-Jordan elimination
algorithms or by the conjugate gradient method.

The main idea of the Gaussian elimination method
is reducing the full matrix A of system described by
Eq. (5) to the upper triangular form, that is, to obtain
the system of equations in the following form:
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From system given by Eq. (6) we find the
unknowns by the formulas:

xk = ckn+1−ckk+1xk+1−...− cknxn, k=n, n-1,...,1 (7)
The Gauss-Jordan algorithm is one of the variants of

the Gaussian elimination algorithm. In this case the matrix
A of system given by Eq. (5) is reduced to the diagonal
form, but not an upper triangular form. In the (k+1)-th
step the current matrix Ak has the following form:

( ) ( )

( ) ( )

( ) ( )

( ) ( )

k k
1n1 ,k 1

k k
k ,k 1 knk
k k

k 1 ,k 1 k 1 ,n

k k
nnn ,k 1

1 0 ... 0 a ... a

... ... ... ... ... ... ...

0 0 ... 1 a ... a

0 0 ... 0 a ... a

... ... ... ... ... ... ...

0 0 ... 0 a ... a

+

+

+ + +

+

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

A (8)

We divide the (k+1)-th row by the coefficient
a(k)k+1,k+1 and eliminate all off-diagonal elements of
the (k+1)-th column. We make this elimination by the

subtraction of the obtained (k+1)-th row multiplied by
a(k)j,k+l from the j-th row (j=1, 2,..., n; j≠k+1).

To guarantee the numerical stability of the Gauss
and Gauss-Jordan algorithms in the general case, a
partial choice of the pivot element is necessary. If we
take the maximum (with respect to modulus) element
in the k-th row as the pivot element at the k-th step of
the elimination, then, before realization of the step, it
is necessary to rearrange the k-th column and the
column with the pivot element.

The parallel realization of the Gauss or Gauss-
Jordan method for m processors is the following.
Conditionally, we divide the vectors z and F into m
parts so that n=m⋅L. The matrix A is divided by the
horizontal lines into m blocks, respectively (Figure 1).
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Fig. 1  The diagram of the data distribution over the processors

Assume that the rows of the matrix A with numbers
1, 2,..., L are stored in the memory of the first processor
(the Host), the rows with numbers (L+1), (L+2),..., 2L
are stored in the memory of the second processor, and
so on. The rows with numbers (m-1)L+1, ..., Lm are
stored in the memory of the m-th processor. The main
idea of the parallel elimination is the following. At the
every step each processor eliminates the unknowns
from its own part of the L equations. The Host
processor chooses the pivot element among the
elements of the current row, modifies this row and
sends it to each of the other processors [6].

During the Gauss elimination process, more and
more processors become idle at every step, since the
number of the equations is diminished by one. This
influences the efficiency of the algorithm. In the Gauss-
Jordan method all the processors make calculations
with their own parts until the end. The waiting time
decreases and the efficiency of the algorithm increases.

The conjugate gradient method is used for solving the
problem with a symmetric matrix. For this we transform
the system given by Eq. (5) to the following form:

(Ak)TAkzk+1 = (Ak)TFk (9)
where (Ak)T is the conjugated matrix.

For an arbitrary initial approximation z0, the first
approximation z1 is found from it by the steepest
descent method:
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Further from z0 and z1 we find all successive
approximations of the conjugate gradient method:
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The stopping condition of the iterative process
given by Eqs. (10) and (11) is:

ε<
−

F

FAzk

Parallelization of the iterative process given by Eqs.
(10) and (11) for solving the problem given by Eq. (9)
is based on the dividing of the matrices (Ak)T and Ak

by the horizontal lines into m blocks. The data
distribution over the processors is similar to the data
distribution in the Gauss method (Figure 1).

At every step of the conjugate gradient method,
each processor calculates its own part of the solution
vector zk. In the case of the multiplication of the matrix
by the vector, each processor multiplies its own part of
rows of the matrix by the whole vector. In the case of
the matrix product (Ak)TAk each processor multiplies
its own part of rows of the conjugated matrix (Ak)T by
the whole matrix Ak.

4. EFFICIENCY OF THE METHODS

Parallelization of the basic algorithms and their
realization on the Massively Parallel Computing
System MVS-1000 [7] is implemented. The analysis
of the efficiency of parallelization of the iterative
algorithms with different numbers of processors is
carried out.

MVS-1000/16 of the Research Institute KVANT
production consists of 16 Intel Pentium III-800, 256
MByte, 10 GByte disk, two 100 Mbit network
controllers (Digital DS21143 Tulip and Intel PRO/
100). Educational computing cluster consists of 8 Intel
Pentium III700, 128 MByte, 14 GByte disk, 100 Mbit
network controller 3Com 3c905B Cyclone.

For comparison of the executing times of the
sequential and parallel algorithms, we will consider the
coefficients of the speed up and efficiency:

Sm = T1 /Tm,   Em = Sm/m
where Tm is the execution time of the parallel algorithm
on MVS-1000 with m (m>1) processors, T1 is the
execution time of the sequential algorithm on one
processor:

Tm = Tc + Te + Ti

where Tc is the computing time, Te is the exchange time
and Ti is the idle time. The number m of processors
corresponds to the mentioned division of the vectors z
and F into m parts so that n=m⋅L.

On the other hand, the efficiency can be calculated
using only the parallel version of a program on a
parallel computer without using the execution time of
the sequential algorithm T1. The efficiency can be
defined as:

E = G/(G + 1)
where G is the granularity of a parallel algorithm [8].

The granularity of a parallel algorithm is the ratio
of the amount of computations to the amount of
communications within a parallel algorithm
implementation. Taking into account the possibility
that the processors may be not equally balanced and
the processor idle time can occur, then the granularity
is calculated using the following expression:

G = Tc / (Te + Ti)
The granularity may be estimated as:
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where max(Tcomp) is the maximum computation time
for one processor and min(Tcomm) is the minimum
communication time for one processor.

Table 1 and Table 2 show the execution times Tm
and the coefficients of the speed up Sm and the
efficiencies Em and E obtained by using the granularity
G of the iteratively regularized Newton method after 5
iterations using the parallel and sequential (m=1) Gauss
and Gauss-Jordan algorithms for problems given by Eqs.
(1) to (4) for 111×35 points of the grid domain.

Table 1 Gauss Method for the 111×35 grid

Table 2 Gauss-Jordan Method for the 111×35 grid

m Tm, min. Sm Em E 
1 57.48 - - - 
2 46.85 1.23 0.61 0.66 
3 36.18 1.59 0.53 0.59 
4 29.38 1.96 0.49 0.56 
5 25.78 2.23 0.45 0.53 
6 21.83 2.63 0.44 0.52 
8 17.25 3.33 0.42 0.49 

10 14.17 4.06 0.41 0.48 
12 12.35 4.65 0.39 0.44 

m Tm, min. Sm Em E 
1 114.1 - - - 
2 60.50 1.89 0.94 0.97 
3 42.38 2.69 0.90 0.91 
4 33.53 3.40 0.85 0.88 
5 28.48 4.01 0.80 0.85 
6 23.88 4.78 0.79 0.83 
8 19.88 5.74 0.72 0.78 

10 16.45 6.93 0.69 0.72 
12 15.35 7.42 0.62 0.66 



E.N. Akimova, V.V. Vasin: Stable parallel algorithms for solving the inverse gravimetry and magnetometry problems

ENGINEERING MODELLING 17 (2004) 1-2, 13-19 17

Table 3 shows the execution times Tm and the
coefficients of the speed up Sm and the efficiencies Em
and E obtained by using the granularity G of the
iteratively regularized Newton method after 5
iterations using the parallel and sequential (m=1)
conjugate gradient method for problems given by Eqs.
(1) to (4) for 111×35 points of the grid domain.

The results of calculations show that the parallel
Gauss and Gauss-Jordan algorithms have efficiency
of parallelization high enough, and the Gauss-Jordan
algorithm efficiency is higher. But the conjugate
gradient method efficiency is higher than the efficiency
of the Gauss and Gauss-Jordan algorithms. This fact
can be explained by the small exchange time. The
elements of the matrix (Ak)TAk are formed
independently in m processors. At every step of the
conjugate gradient method, each processor calculates
its own part of the solution vector zk.

In the case of the parallel Gauss algorithm with the
number of processors m<5, the efficiency is Em≥0.45.
In the case of the parallel Gauss-Jordan algorithm with
the number of processors m≤5, the efficiency is
Em≥0.8. In the case of the parallel conjugate gradient
method with the number of processors m≤5, the
efficiency is Em≥0.9. When the number of processors
m is small, then the speed up Sm increases almost
linearly as the number m increases. On the other hand,
when m is large, then the exchange time increases, so
the efficiency Em decreases.

In Figure 2, the graph 1 and the graph 2 or the graph
3 show the efficiencies Em depending on the number m
of processors for Gauss and Gauss-Jordan algorithms
or for the conjugate gradient method, respectively. The
graph 1G, the graph 2G and the graph 3G show the
efficiencies E obtained by using the granularity G
depending on the number m of processors.

The results of the experiments obtained using
granularity were compared with the results obtained
by standard methods of efficiency calculation. The
efficiency calculated by using the granularity concept
is higher than that using the classical method.

5. NUMERICAL RESULTS

In Figures 3 and 4 the profiles (y=24 km) of the
interfaces S1 and S2 for the real gravity and magnetic
fields of some area in the Urals for H=2 km and
H=10 km are represented.

In each figure, Curve 1 (continuous lines) is the
profile of the gravimetry solution given by Eq. (1)
obtained by the iteratively regularized Newton method
given by Eq. (4) using the parallel technique, and
Curve 2 (dotted lines) is the profile of the
magnetometry solution given by Eq. (2).

To approximate the integral operator in Eq. (4), we
used the two-dimensional analogue of the rectangular
quadrature formulas for 111×35 points of the grid
domain with the mesh widths hx=0.5 and hy=2 km. The
parameters αk were chosen from numerical experiments.

Table 3 Conjugate Gradient Method for the 111×35 grid

m Tm, min. Sm Em E 
1 84.38 - - - 
2 43.20 1.95 0.98 0.99 
4 22.75 3.71 0.93 0.95 
5 18.63 4.52 0.90 0.93 
10 10.37 8.14 0.81 0.84 
11 9.67 8.79 0.80 0.82 
17 7.03 12.0 0.71 0.75 

Fig. 2  Efficiencies for the Gauss, Gauss-Jordan and
conjugate gradient method

Fig. 3  Profiles (y=24 km) of the interface S1

Fig. 4  Profiles (y=24 km) of the interface S2

In the reconstruction of the interfaces S1 (H=2), we
used the following data: f = 6.67⋅10-5 is the gravitation
constant, ∆σ=0.48 g/cm3 is the density jump on the
interface, ∆J=6.2 is the averaged jump of the z-th
component of the magnetization vector, z0(x,y)=0.3 km
is the initial guess and αk=2.5.

The following data were used in the reconstruction
of the interfaces S2 (H=10): ∆J=4.39, f=6.67⋅10-5,
∆σ= 0.23 g/cm3, z0(x,y)=0.3 km and αk=1.1.

In Figures 5 to 8 the reconstructed interfaces S1 and
S2 for the real gravity and magnetic fields of some area
in the Urals for H=2 km and H=10 km are represented.
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They are reconstructed by the iteratively regularized
Newton method given by Eq. (4) with the help of the
parallel Gauss or Gauss-Jordan algorithms or the
conjugate gradient method.

Fig. 8  The reconstructed interface S2  for
the magnetometry problem

6. CONCLUDING REMARKS

The main conclusion is the following. The
interfaces S1 and S2 obtained as solutions of the
gravimetry and magnetometry inverse problem, Eqs.
(1) and (2), by the iteratively regularized Gauss-
Newton method, Eq. (4), correspond to the real
geological perceptions about the investigated region
of the Urals.

The nearest gravity and magnetic interfaces (see
Figure 3 and Figures 5 and 6) are rather different, but
the  deeper interfaces (see Figure 4 and Figures 7 and
8) are similar. We believe that, probably in the first
case, the sources of the gravity and magnetic fields are
different, and in the second case these sources are the
same (or very close) and so we have the gravity and
magnetic solutions very close to each other.

7. ACKNOWLEDGEMENTS

The authors are deeply grateful to the Russian
Foundation for Basic Research (project No. 03-01-
00099) for the financial support.

8. REFERENCES

[1] V.V. Vasin, G.Ya. Perestoronina, I.L. Prutkin and
L.Yu. Timerkhanova, Reconstruction of the relief
of geological boundaries in the three-layered
medium using the gravitational and magnetic
data, Proc. of the Conference on Geophysics and
Mathematics, Institute of Mines, UrB RAS,
Perm, pp. 35-41, 2001.

[2] A.B. Bakushinsky, A regularizing algorithm on
the basis of the Newton- Kantorovich method for
the solution of variational inequalities, Zh.
Vychisl. Mat. Mat. Fiz., Vol. 16, No. 6, pp. 1397-
1404, 1976.

Fig. 5  The reconstructed interface S1  for
the gravimetry problem

Fig. 6  The reconstructed interface S1  for
the magnetometry problem

Fig. 7  The reconstructed interface S2  for
the gravimetry problem



E.N. Akimova, V.V. Vasin: Stable parallel algorithms for solving the inverse gravimetry and magnetometry problems

ENGINEERING MODELLING 17 (2004) 1-2, 13-19 19

STABILNI PARALELNI ALGORITMI ZA RJE[AVANJE INVERZNIH GRAVIMETRIJSKIH I
MAGNETOMETRIJSKIH PROBLEMA

SA@ETAK

U ovom radu ispituju se trodimenzionalni inverzni problemi gravimetrije i magnetometrije da bi se prona{li
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