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SUMMARY
The paper presents the analysis of stabilisation and accuracy of gyroscope stabilizer, which is used for automatic

control and homing of aerial objects. The existence of through relations between channels of multiaxial gyroscope
stabilizer causes errors in the operation of those devices. Therefore, it is necessary to select the optimum parameters
for all elements of stabilization channels. The algorithm of the optimum selection of the above-mentioned parameters
and the results of computer simulation investigations are given.
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1. INTRODUCTION

Modern gyroscope stabilizers (GS) are highly
complicated electromechanical devices equipped with
microprocessors and blocks exchanging information
with the board computer [1, 2, 3]. They are geared, first
of all, to: a) stabilize platform angular position with
reference to one, two or three axes; b) measure
inclination, deflection and tilt angles; c) set the
program-run motion of an aerial object; d) generate
control moments for other measurement elements of
stabilization (e.g. target co-ordinator in a homing
missile gyroscope compass aboard, etc.) or to change
the motion of an aerial object [4, 5, 6] (e.g. a spaceship
or small calibre homing missile).

The paper discusses an active three-degree direct
gyroscope stabilizer (DGS), which might be applied to
the homing of light aerial objects (AOs), such as, e.g.,
homing bombs. DGS is designed to generate control
moments in the tilt, inclination and deflection channel
in accordance with the assumed homing algorithm.

Apart from homing, positioning and programme-
run manoeuvring, AO stabilizing is also performed.

The operation principle of each control channel -
both at the basic operational mode and at the initial
setting - is analogous with the operation principle of a
single-axed gyroscope stabilizer. The only significant
difference results from the occurrence of through
relations between the channels.

Through relations between the channels of GS
force stabilization lead to errors made by these devices.
The physical realization of those relations consists in
the fact that when the platform is deflected with
reference to, e.g., inclination axis, the deflection
channel gyroscope as an inert body, connected with the
base by friction forces, will also react to deflection. It
should be mentioned, however, that when the
interference along the deflection line is absent, the
above-mentioned reaction will not take place. The
conclusion is that the device analysis cannot be limited
to the investigations concerning two independent
single-axed GSs, i.e. to the solutions to two differential
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equations of the second order (whose structure is very
close to equations describing the motion of an astatic
gyroscope of three degrees of freedom) but it must be
the system of four such equations. Obviously, it is not
possible to obtain an analytical solution to a
characteristic equation of 8th degree - so it must be
carried out with a numerical method.

Thus through relations account for considerable
complications of GS stability and accuracy
investigations. Moreover, an optimum selection of
parameters of individual elements of control channels
should be made, which was conducted with modified
Golubiencev optimization method. Due to this method,
it was possible to unambiguously determine the values
of coefficients of amplifications and damping for one-
and two-axed gyroscope stabilizer. Those are selected
in such a manner so that transition processes can
disappear over the shortest possible time. DGS is a
strongly non-linear system, so at high values of its
angular deflections and angular velocities, there arise
errors in the motion actually performed with reference
to the pre-set one. DGS programme-run control in the
non-linear range of operation and under the conditions
of interference impact must be accompanied by
additional optimum control in the closed system. The
algorithm for the selection of the optimum parameters
of DGS control presented in the paper contributes to
the minimization of discrepancies between the pre-set
and performed path. It is carried out due to the
possibility of changing, in real time, the regulator
coefficients, depending on changes in angular velocity
of self rotations in the function of time. If we deal with
gyroscopes or regulators of already known parameters,
the optimum angular velocity of self rotation can be
selected, being the function of those parameters.

The paper will discuss the possibility of applying a
direct gyroscope stabilizer (DGS) to the control and
stabilization of aerial objects. DGSs, also called
gyroscope executive organs (GEO), are designed to
generate control moments (gyroscope rudders) and
damping moments (gyroscope dampers) in the control
systems of aerial objects.

At first, DGSs were used to reduce ships swaying or
to stabilize single-rail cars and two-wheeled vehicles.
Later they also served as the stabilization of ship guns.

The 1950s, the beginning of the space exploration
era, stirred up wide interest in DGSs. It turned out that,
in comparison with other executive organs, DGSs
demonstrated unmatched accuracy, moreover, they
were energy saving.

Depending on the operating range, the systems with
DGSs are divided into semi-passive and active.

The main task of semi-passive systems is to damp
vibrations of an aerial object (AO). The expenditure
of energy in GEOs results mainly from the necessity
of maintaining constant values of gyroscopes angular
momenta. Active range systems account for AOs
stabilization, orientation and program-run manoeuvres.

GEOs are constructed on the basis of two- and
three-degree gyroscopes. Most frequently, in both
types of GEOs doubled gyroscopes are used.
Moreover, gyroscopes used in GEOs are those with the
classical Cardan suspension, doubled gyroscopes with
conical suspension and non-Cardan suspension
(spherical) gyroscopes.

2. MODEL OF THE MOTION OF AERIAL
OBJECT (AO) - GYROSCOPE SYSTEM

Let us consider an aerial object with a gyroscope
located on it or inside it (Figure 1). Assume first, that
the gyroscope symmetrical rotor can revolve around
axis AA, which coincides with AO longitudinal axis.
As the rotor is symmetrical in respect of fast rotation
axis, the distribution of masses of the whole system of
AO-gyroscope does not change while the rotor rotates.
Therefore, the system moments of inertia will be
constant and the system motion can be described with
the same method as the motion of a single rigid body.

Thus, AO is assumed to be a non-deformable (rigid)
body of constant mass. Hence the motion of AO-
gyroscope system can be stated with two systems of
equations, which describe the motion of the system
centre of mass and the motion around the centre of mass.
In addition, the case considered will be the simplest one,
when the rotor axis Ox3

 is, at the same time, the principal
central axis of inertia of AO (axis Ox).

Fig. 1  Aerial object with gyroscope located on it
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The equation of AO translatory motion in the
connected co-ordinate system Oxyz reads as follows:

o x
d *m * * * *
dt

⎛ ⎞+ − =⎜ ⎟
⎝ ⎠

u w q v r F (1a)

o y
d *m * * * *
dt

⎛ ⎞+ − =⎜ ⎟
⎝ ⎠

v u r w p F (1b)

o z
d *m * * * *
dt

⎛ ⎞+ − =⎜ ⎟
⎝ ⎠

w p v q u F (1c)

where m0 is mass of AO-gyroscope system; u*, v* and
w* are components of AO linear velocity in the related
co-ordinate system Oxyz; p*, q* and r* are components
of AO angular velocity in the related co-ordinate
system  Oxyz and Fx, Fy and Fz are components of the
principal vector of external forces acting on AO, at the
same time:
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In exactly the same co-ordinate system, however,
the equation of the motion of a spherical AO reads as
follows:

( )s
ox oz oy

dJ J J * * *
dt

+ − =
p q r L (3a)

( )oy ox oz
d *J J J * * *
dt

+ − =
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d *J J J * * *
dt

+ − =
r p q N (3c)

where: Jox, Joy and Joz are principal central moments
of AO inertia in relation to the individual axes of the
system Oxyz; L*, M* and N* are components of the
vector of the principal moment of external forces, at
the same time:
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where: LA, MA and NA are components of the vector
of the principal moment of aerodynamic forces; LG,
MG and NG are components of the vector of the
principal moment of gravity forces; Mbs and Mcs are
moments of forces controlling the aerial object.

Kinematic relations between angular velocities

( )o
o o o

dΨ * sinΦ * cosΦ secΘ
dt

= +q r (4a)

o
o o

dΘ
* cosΦ * sinΦ

dt
= −q r (4b)

( )o
o o o

dΦ * * sinΦ * cosΦ tgΘ
dt

= + +p q r (4c)

where Ψo, Θo and Φo are angles of AO longitudinal
axis deflection, inclination and tilt.

Kinematic relations between linear velocities (AO flight path)

( ) ( )o
o o s o o o o o o o o o

dx
* cosΘ cosΨ * sinΦ sinΘ cosΨ cosΦ sinΨ * cosΦ sinΘ cosΨ sinΦ sinΨ

dt
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* cosΘ sinΨ * sinΦ sinΘ sinΨ cosΦ cosΨ * cosΦ sinΘ cosΨ sinΦ sinΨ

dt
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o
o s o o o

dz
* sinΘ * sinΦ cosΘ * cosΦ cosΘ

dt
= − + +u v w (5c)

3. THE CONTROL OF THE AO-GYROSCOPE SYSTEM

In the case under consideration, the control of the aerial object consists in forced changes in the gyroscope axis
position in relation to AO body (Figure 2). That task is carried out by control moments Mbs and Mcs, which make the
AO body axis turn in relation to the inertial reference system Oxoyozo (in relation to the Earth). Therefore, the
gyroscope considered will be called a control moment gyro.

The equations of the gyroscope motion for such a case, when the inertia of frames is disregarded, will be as follows:

rb
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where: Jgo and Jgk are longitudinal and transverse
moments of inertia of gyroscope rotor, respectively; ϑg
and ψg are angles stating the gyroscope axis position
in space; Φg is angle of rotation of gyroscope rotor;
Mrb and Mrc are moments of friction force in the
bearings of internal and external frame, respectively.

Linearized equations of gyroscope motion will take
on the following form:

( ) ( )( ) rb
s
b

*
g

n

*
ggo

*
ggk MMrψpΦJq

dt
dJ

g

−=++++ &
43421

&&ϑ (7a)

( ) ( )( ) rc
s
c

*
g

n

*
ggo

*
ggk MMqpΦJrψ

dt
dJ

g

−=++−+ ϑ&
43421

&& (7b)

The diagram of the control of the AO-gyroscope
system is presented in Figure 3.

Control moments Mbs and Mcs, which appear in the
right-hand sides of Eqs. (6) and (7), will be given the
form:

ps k
b bb
s p k
c c c

= +

= +

M M M

M M M
(8)

Quantities Mbp and Mcp, in Eq. (8), are program-run
control moments, determined from the dynamics inverse
problem. If friction in gyroscope bearings is assumed to
be viscous and a temporary assumption is made that AO
moves along a rectilinear path, the moments determined
from Eq. (7) will take on the form:

( ) ( ) gzb
*

gzggo
*

gzgk
p
b ηrψnJq

dt
dJM ϑϑ ++++= && (9a)

( ) ( ) gzc
*

gzggo
*

gzgk
p
c ψηqnJrψ

dt
dJM ++−+= ϑ&& (9b)

where ϑgz and ψgz are desirable angles of gyroscope
axis position.

Controls Mbp and Mcp should be selected in such a
manner so that the aerial object would move along a
desired path or adopt a pre-set position in space.

Quantities Mbk and Mck, on the other hand, are
correction controls determined by means of complex
optimization, with the use of the LQR method and the
modified Golubiencew optimization method, the
algorithm of which is presented in Figure 4. Correction
controls become a necessity when interference occurs
and non-linearity affects AO-gyroscope system. Those
controls are worked out in the regulator on the basis of
discrepancy parameters, i.e. deviation of the actual
motion of the aerial vehicle from the pre-set motion.

Fig. 2  Gyroscope with rotor axis capable of changing
position in respect of aerial object

Fig. 3  Functional diagram of control of AO-gyroscope system
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Fig. 4  Diagram of optimization with modified Golubiencew method
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4. OPTIMISATION OF CONTROL
MOMENT GYRO

The impact of the effect of the base: p*=q*=r*=0,
friction in bearings: Mrb=Mrc=0 and program-run
control: Mbp=Mcp=0 will be disregarded in Eqs. (9) in
order to select the optimum correction control. Then,
with the use of states space method, we obtain
simplified Eqs. (9) in the vector-matrix form:

g
g g g g
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= ⋅ + ⋅
x

A x B u (10)
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The law of control will be presented in the
following form:

ggg xKu ⋅−= (11)

The conjugation matrix Kg, which occurs in Eq. (3),
is determined from the following dependence:

g
T
g

1
gg PBRK −= (12)

Matrix Pg is a solution to Riccati algebraic equation:

T 1 T
g g g g g g g g g g2 −+ − + =A P P A P B R B P Q 0 (13)

Weight matrices Rg and Qg, which occur in Eqs. (12)
and (13), reduced to diagonal form, are selected
experimentally; they are sought starting with equal values:

( )8,..2,1i,
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x2
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maxmax i
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i
ii === (14)

where ximax is the maximum range of changes in the
i-th state variable value; uimax is the maximum range
of changes in the i-th control variable value.

On obtaining numerical solution to Riccati matrix
equation, Eq. (13), and determining amplifications
matrix Kg, it could be noted that for the case under
consideration, the matrix individual components fulfil
the following dependence:
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After amplifications coefficients from Eq. (15) are
inserted into Eq. (11), the correction controls will take
the following form:
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Thus when Eq. (16) is taken into account, the
gyroscope system in the closed system, Eq. (10), will
be equivalent to a new form:

g *
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From now on, the friction in gyroscope suspension
bearings will be regarded as negligibly small, i.e.
bb=bc=0. For the gyroscope system described in such a
manner, we will be additionally seeking such parameters
and relations between them so that the transition process
damping would be the shortest. In order to achieve that,
the modified Golubiencew optimization method [7] will
be employed (Figure 4).

On the basis of Hurwitz stability conditions as well
as the modified Golubiencew optimization method [4],
we will obtain the following system of equations and
inequalities:

0h,0k,0k gcb >>> (20a)

01h
2
1k2 2

gb >+− (20b)

gc h
2
1k = (20c)

0kkkhkh
2
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4
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16
1 2

c
2
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2
g

2
g

4
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If we consider the condition of maximization of the
absolute value of matrix trace Ag*:

maxTr *
g →A (21)
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from inequality Eq. (20b), we will obtain the following
value for a damping coefficient:

bg k42h += (22)

Inserting Eq. (22) into Eq. (20c), we will receive:

bc k42
2
1k += (23)

Taking into account Eqs. (17), we have:

bgk
2
g

2
gog kJ4nJ2h += (24)

gk

2
g

2
go

bgk
2
g

2
goc J

nJ
kJ4nJ2

2
1k ⋅+= (25)

In this way, coefficients andg ch   k  are
unambiguously specified as functions of gyroscope
parameters Jgo, Jgk and ng as well as coefficient bk .
The latter should satisfy stability conditions and
technical limitations resulting from the gyroscope
construction itself.

The dependence derived above can be applied to
gyroscope control under the conditions of changeable
angular velocity of self-rotation (e.g. in some homing
bombs or in systems for target search with a wide range
of gyroscope axis angular deflections). Then it is
necessary to continually take measurements of value
ng(t) and update, in real time, the values of regulator
coefficients hg and kc in accordance with dependence
Eqs. (24) and (25). The coefficient kb is pre-set in a
programme-run fashion. That allows adaptive
gyroscope control. If many other gyroscope parameters
are changeable in time, the algorithm for adaptive
gyroscope control should be applied [8].

Figure 5 shows the results of the control of
gyroscope axis in moving target tracking, where the
optimum regulator is applied. Its coefficients are
determined from Eqs. (24) and (25).

In the actual motion of the gyroscope, we deal with
kinematic effect of AO deck, which takes the form of
angular velocities p*, q* and r*. In turn, the kinematic
effect of the deck manifests due to friction in
suspension bearings. Program-run controls are,
therefore executed with a certain error and the actual
AO flight path does not coincide with the computed
one. Thus, the eventual correction controls for the AO-
gyroscope system should take the form:
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ϑϑ
ϑϑ (27)

If gyroscope is suspended on Cardan joint and given
three degrees of freedom, it gets isolated from the aerial
object deck. Then, the equations of AO motion and
gyroscope motion are no longer coupled. Further in the

Fig. 5  Results of gyroscope axis control with the optimum
regulator application to motionless point tracking: change in

angular deflections as the function of time

5. OPTIMUM CORRECTION FOR ONE-
AXIAL DIRECT GYROSCOPE
STABILIZER (OADGS)

We will discuss a gyroscope of three degrees of
freedom, borne on the base P (aerial object deck)
(Figure 6).

If we impart rotation around the suspension
external axis CC to the gyroscope base, due to friction
forces unavoidably occurring in resistance a and b, the
moment Mc will affect the gyroscope, trying to turn it
in respect of axis CC. The moment of friction forces
will tend to make the gyroscope follow the moving
base. Yet, as we know, the gyroscope primary motion
will be made not in the direction the moment Mc acts,
but around the suspension external axis BB, which is
perpendicular to vector cM

r
direction. The angular

velocity of the discussed precession motion will be
expressed:
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paper, we will consider examples of one- and two-axial
gyroscope stabilizers, which are independent of AO
motions. They are most frequently applied to the inertial
systems of navigation of aerial objects.
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gggo

c
g cosnJ

M
ϑ

ϑ =& (28)

While the gyroscope moves around axis BB with
velocity gϑ& , a gyroscope moment appears in its
system:

gggog nJM ϑ&= (29)

and it acts around axis 0y3 related to the gyroscope.

Because of the large mass of the external frame in
comparison with the internal one, however, the bearing
of the axis of the external frame (called stabilization
axis) carries high loads. Those yield large friction
moment, which in turn, leads to the internal frame
precession. At small gyroscope moment of momentum,
the gyroscope moment appearing in response to friction
moment along the stabilization axis, might result, over
a short time interval, in the folding of the frames (the
angle between them equals zero), which means the
device loses its basic property. In order to prevent this
unfavourable incident happen, the stabilizer system is
equipped with a stabilizing electric engine with a
converting amplifier (Figure 6). Then, after the
interference moment appears, the gyroscope internal
frame will deflect by angle ϑg, the value of which will
be measured with the precession angle sensor and
transmitted to the amplifier as an electric signal. Later,
the amplified and converted signal is passed to the
stabilizing engine, which will apply moment Ms, of the
sense opposite to that of the interference moment Mzc,
to the stabilization axis. As the process develops, both
moments become equal Ms=Mzc, the gyroscope
precession is ceased and the platform keeps, with the
pre-set accuracy, its invariable position in the inertial
space in relation to the stabilization axis [2, 3].

In this way, simultaneous operation of the gyroscope
of two degrees of freedom and the stabilizing engine
ensures force based gyroscope stabilization. However,
due to friction in the bearings of gyroscope and platform
suspensions, the external interference in the form of
kinematic input (e.g., AO deck vibrations, AO linear and
angular accelerations or the Earth rotational motion),
affecting the stabilizer base leads to errors in stabilizer
position. In order to minimize the above-mentioned
parameters, it is necessary to select the optimum
parameters of gyroscope stabilizer (characteristics of
stabilising engine, damper and gyroscope moment of
momentum).

Taking into account the above-mentioned formal
similarity between OADGS and a gyroscope of three
degrees of freedom, we will rely on motion equations
of the latter writing them as follows:

zcs
g

ggo
p

p2
p

2

p MM
dt

d
nJ

dt
dψ

µ
dt

ψd
J +=−+

ϑ
(31a)

zb
p

ggo
g

g2
g

2

gk M
dt

dψ
nJ

dt
d

µ
dt

d
J =++

ϑϑ
(31b)

It should be noted that the frequency of:

pgk

ggo
g JJ

nJ
=Ω (32)

undamped nutation vibrations of GEO is much lower
than the frequency of nutation vibrations of the
gyroscope of three degrees of freedom, but the
respective amplitudes are much higher. Therefore it is

Fig. 6  Diagram of one-axial gyroscope stabilizer

In the general case, gyroscope moment Mg
projection onto the external suspension axis CC will
equal:

cg
gggo

c
ggogggc Mcos

cosnJ
MnJcosMM === ϑ

ϑ
ϑ (30)

and it will have the sense opposite to the external
moment Mc.

As we can see, the component of the gyroscope
moment Mgcosϑg counterbalances the external
moment Mc, acting on the gyroscope, thus maintaining
the stability of the position of the gyroscope external
frame in respect of the gyroscope suspension axis CC.

One-axial gyroscope stabilizer is one of the simplest
types (Figure 7). Its structural diagram is analogous with
that of astatic gyroscope of three degrees of freedom
suspended on Cardan joint (Figure 6). The only
difference is the platform, stabilized in respect of a
selected axis, fixed to the external frame. Thus the
principle of operation of one-axial stabilizer does not
differ from that of a gyroscope of three degrees of
freedom. It will be enough to introduce the angle of
deflection ψp of the platform instead of the angle of
deflection ψg of the external frame and also account for
the damper µg between the gyroscope frame and the
platform. The main task of one-axis stabilizer is to make
the platform (where measurement devices might be
located) position, in respect of a selected axis in space,
independent of the base (AO deck) angular motions.
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always necessary to account for nutation vibrations of
the gyroscope executive organ. That results from the
fact that, contrary to gyroscope of three degrees of
freedom, in the stabilizer Jp>>Jgk.

In such cases, when the platform (or the aerial
object) should be turned by a desired angle value, it is
enough to apply moment Ms, worked out by the
appropriate program-run device.

For the simplest control law, formed by the
amplifier, we can assume:

ggs kM ϑ= (33)
Quantity kg, which occurs in dependence, Eq. (33),

is a constant coefficient, whose value depends on static
characteristics of elements of stabilization contour:
precession angle sensor, amplifier and stabilizing
engine.

Though the problem of stability is not considered
for gyroscope of three degrees of freedom because it
is the very nature of it to maintain stability, the issue
becomes of primary importance for stabilizer. Another
important problem is to select stabilizer parameters in
such a manner so that the transition processes
originating in interference moments Mzb and Mzc
would vanish in the shortest possible time, which
ensures sufficient stabilization accuracy.

Taking into account that Jp>>Jgk and assuming that
the OADGS input is caused by non-zero initial
conditions and also considering dependence, Eq. (33),
in Eq. (31a), the mathematical model of the stabilizer
can be written as follows:
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By introducing a state vector into the above system:

[ ]gggg ψ&&ϑϑ=x (35)

we will obtain the state matrix of the following form:
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From stability and optimality conditions we will get:

0µ,0k gg >> (37)
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Moreover, from inequality Eq. (39) and condition:

max
J
µ

3
1Tr

gk

g
g →−=A (41)

it will ensue that:

g
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g n
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3µ → (42)

Fig. 7  Principle of operation of one-axial direct gyroscope stabilizer
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Thus assuming the maximum value µg expressed by
Eq. (42) and inserting it into Eq. (40), we will obtain:

2
g

2
go

pgk

pgk
g nJ

JJ

JJ

9
3k = (43)

In this way we have determined unambiguous
values of amplification and damping coefficients, for
which OADGS will return to the pre-set position in
the shortest time.

Taking into account Eq. (38), it is possible to
determine the minimum angular velocity of the
gyroscope self-rotation from Eq. (43), at which
OADGS will be still stable:

go

g4 pgkming J3

k3
JJ3n = (44)

Determining the optimum velocity of self-rotation
from Eq. (43):

go

g4 pgkoptg J

k3
JJ3n = (45)

we will note that those velocities hold the following
relations:

ng opt = 3 ng min (46)

In Figures 8 and 9, the areas of permissible changes
and the optimum angular velocities of self-rotation
depending on changes in OADGS parameters are
presented in a graphic form. The following notation is
introduced in figure:

go

4 pgk
g J

JJ
Ĵ = (47)

Fig. 9  Dependence of the optimum stable angular velocity ng

of OADGS on amplification coefficient kg and quantity gĴ

6. OPTIMUM CORRECTION FOR TWO-
AXIAL DIRECT GYROSCOPE
STABILIZER (TADGS)

In two-axial stabilizer (Figure 10), gyroscope can
rotate around axes of both frames. Signals
corresponding to those rotations are transferred to two
stabilizing engines through an amplifier. The engines
have to eliminate interference deflections, because of
which the gyroscope starts turning in the opposite
direction. Let us assume that correction moments are
proportional to rotation angles. Then, if an ideal
operation of the stabilization system is assumed, we
can write:

Mb
k=−kbϑg, Mc

k=kcψp (48)

Taking into account the proportionality of velocities
of damping moments in respect of both axes, the
stabilizer motion equation for small deflection angles
reads as follows:
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where hb, hc are coefficients of damping moments.
Let the system described by Eq. (49) be presented

in vector-matrix form:

ggg xAx =& (50)
where:
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Fig. 8  Dependence of the minimum stable angular velocity ng

of OADGS on dumping coefficient µg and quantity gĴ
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Applying, as in the previous case, the modified
Golubiencew optimization method, we will determine
such coefficients kb, kc, hb, hc, for which the transition
process in TADGS will disappear in the shortest time.
Analytical dependences obtained will not be quoted
because of the limited scope of the present paper.

7. CONCLUSIONS

Gyroscope as the executive organ of control in the
guidance systems of aerial objects (homing rocket
missiles, guided bombs, etc.) has two basic advantages:
a) the moment from the engine is transmitted directly,
without complex systems of levers and gears; b) the
transmission of the control moment takes place with
amplification effect - the engine transmits much lower
moment than it is the case with other executive organs.

Moreover, the basic advantage of a light aerial
object homing with a direct gyroscope stabilizer is its
great autonomy and the fact that a complex optical
system can be entirely eliminated.

As gyroscope is strongly a non-linear system, at
high values of gyroscope axis deflections and angular
velocities, there appear errors in the pre-set motion in
relation to that actually performed. Thus gyroscope
programme-run control in its non-linear operation
range and under the interference conditions must be
accompanied by additional optimum control in a
closed system.

The algorithm for the selection of the controlled
gyroscope system optimum parameters put forward in
the present paper provides for the minimization of
discrepancies between pre-set path and the one actually
exercised. We have the option to change, in real time,
the regulator coefficients depending on change in self-
rotation angular velocity as the function of time. If we
deal with a gyroscope and regulator of already set
parameters, it is possible to select the optimum angular
velocity of self-rotation as the function of these
parameters.
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ALGORITAM KONTROLE I KOREKCIJE DIREKTNOG GIROSKOPSKOG
STABILIZATORA
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