
G. Altintas, M. Bagci: Determination of the steady state response of viscoelastically supported rectangular specially orthotropic plates

ENGINEERING MODELLING 17 (2004) 3-4, 61-68 61

SUMMARY
The influence of the amount of the supported area on the free and forced vibration properties of anisotropic plate

is presented. Using the energy based finite difference method, the problem is modelled by a kind of finite difference
element. Due to the significiance of the fundamental frequency of the plate, its variation was investigated with
respect to the amount of the supported area on the plate, mechanical properties of plate material and translational
spring coefficient of supports. The steady state response of viscoelastically supported plates was also investigated
numerically for various damping coefficients and amounts of supported areas. Numerical results are obtained to
investigate the effect of the ratio of the plate system. In the numerical examples, the natural frequency parameters
and steady state responses to a sinusoidally varying force are assessed for the fundamental mode. Results showing
effect of supported area ratios of plate indicate that variation of ratio of supported area of plate system is very
significiant. Convergence studies are made. Many new results have been presented. Considered problems are solved
within the frame work of Kirchhoff-Love hypothesis.
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1. INTRODUCTION

It is generally accepted that classical support
conditions employed in the analysis of rectangular plate
behaviour represent only limiting mathematical
conditions. The actual boundary conditions of a real
system are mostly not classical, for example in ship
plating, machine tables, circuit boards, solar panels,
bridge decks, aircraft and marine structures supports
generally accepted are elastic. In many branches of
modern industry, these panels and plates are fabricated
from composite materials. Therefore, the present
investigation may be considered to be a problem of the
mechanics of elements fabricated from composite
materials.

Lot of work has been undertaken for the analysis of
a rectangular plate in the case of free and forced

vibrations in literature. Extensive investigation has been
carried out on the analysis of the free vibration of
rectangular plates having classical boundary conditions
[1-6] and elastically restrained edges [7-31] have been
widely analyzed. Viscoelastically supported plates were
studied by several researchers for point supported plate
systems. Yamada and co-workers [32] studied free
vibrations of elastically point-supported plates and
forced vibrations of viscoelastically point-supported
isotropic plates. Kocatürk and Altintas  [33, 34]
extended Yamada’s [32] problem in case of anisotropic
plates by using finite difference tecnique.

In this paper, plate problems are studied particularly
for the case of boundary conditions elastically and
viscoelastically restrained against translation. To
represent many practical applications on industrial
structures supports are located on areas as wide bands
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Fig. 1  Viscoelastically supported plate subjected to
concentrated force

The elastic symmetry axis of the plate material
coincide with the 0X and 0Y axes. Therefore the plate
is specially orthotropic. Given W is the lateral
displacement of the mid-surface of the plate

corresponding coordinate Z, maximum strain energy
of the plate is:
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and maximum kinetic energy of the plate is:
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where DXX, DYY and D66 are expressed as follows:
DXX = (EX' h3)/12,
DYY = (EY' h3)/12,
D66 = (GXY h3)/12

(3)

where GXY is shear modulus. EX', EY' are derived using:
νXYEY = νXYEY,     e = EY/EX,

EX' = EX/(1−ν2
YX/e),   EY' = EXe/(1−ν2

YX/e)
(4)

The additional strain energy and dissipation function
per viscoelastic support is:

Fs = 1/2 k' W2
Si,   D=1/2 c' (WSi)

2 (5)
where k' and c' is spring coefficient and damping
coefficient per viscoelastic support, EX, EY are Young’s
moduli in the 0X and 0Y directions, respectively, and
vYX is the Poisson’s ratio for the strain response in the X
direction due to an applied stress in the Y direction. The
total energy of the whole plate can be found by summing
the entire area of plate with supports and external force.
The potential energy from external force is:

Fe = −FiWi (6)
where Fi and Wi are external forces and corresponding
displacements.

Introducing the following non-dimensional
parameters:

( ) ( ) i t

X Y ax , y , ,
a b b

w x,y,t w x,y e W / a, i 1ω

α= = =

= = = −
(7)

the above energy expressions can be written as:

parallel to the edges. Line supports on the edges are
also investigated as a special case of wide band
supports.

A review of the related literature reveals that this
problem has not been properly addressed yet. Due to
the lack of research work in this area, this paper aims
to provide some vibration solutions for plates systems.
The accuracy of the results was partially shown by
comparing results available from other sources
wherever possible.

2. ANALYSIS

Consider a viscoelastically supported loaded plate
with side lengths LX, LY  and thickness h subjected to
a concentrated force as shown in Figure 1.
Translational stiffness and damping coefficients were
assigned equally per supported area. Supports are
obtained by using Kelvin-Voight type point support in
every discrete area on finite difference mesh. By
choosing different values of translational spring
coefficient of supports everybody can obtain free,
elastic or translationaly rigid supports while damping
coefficient of supports is zero.
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The derivative terms were approximated in terms
of discrete displacements at gridpoints (see Figure 2)
by using the following finite difference operators:
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The energy for the whole plate can be found by
summing over the entire area of the plate. Thus:
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where N is taken as the number of the mesh points in
each of the two directions in the plate region, N×N is
the total number of the area elements on the plate.

The governing differential equation obtained from
the Lagrange’s equation is given as:
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where is n,mw  the m, n the discrete displacement and
the overdot stands for the partial derivative with respect
to time. Introducing the following non-dimensional
parameters,
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and remembering that ( ) ( ) i t
1 2 1 2w x ,x ,t w x ,x e ω= ,

which was given in Eq. (7), by using Eq. (11) for the
mesh point m, n with Eq. (8a-e) results in the following
expression:
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Fig. 2  Typical finite difference mesh on part of a plate
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where αS and αQ are taken values 0, 1 depending on
existence of support, load respectively on pivotal point
m, n. One may prefer element and system matrix forms
similar to finite element method. In the form of Eq.
(13), there is no need for any manipulation to express
final form of solution of algebraic equations.

For the whole mesh points, by using Eq. (13), the
following set of linear algebraic equations is obtained
which can be expressed in the following matrix form:

2iλγ λ+ − =Aw Bw Cw q (14)
where A, B and C, and are coefficient matrices obtained
by using Eq. (13) for all mesh points. For free vibration
analysis, when the external force and damping of the
supports are zero in Eq. (14), this situation results in a
set of linear homogeneous equations that can be
expressed in the following matrix form:

2λ− =Aw Cw 0 (15)
Numbering the mesh points is shown in Figure 2.

By decreasing the dimensionless mesh widths, the
accuracy can be increased.

The total magnitude of the reaction forces of the
supports is given by:
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and therefore the force transmissibility at the supports
is determined by:

( )∑∑ +== q/wiF/PT jjiR λγκ (17)

The number of unknown displacements is (N+2)2,
where N2 is the mesh size in the plate region.

3. NUMERICAL RESULTS

The steady state response to a concentrated force
acting on an orthotropic square plate, which is
viscoelastically supported along all edges is calculated
numerically. Viscoelastic supports are given equally per
supported area. A brief investigation of the free
vibration of an elastically supported plate is necessary
for a better understanding of the responses presented
in this study. The natural frequencies of the elastically
supported plate are determined by calculating the
eigenvalues, assuming that the damping parameter of
the supports and external force are zero. Poisson ratio
υ, is taken 0.3 in all numerical calculations.

In Table 1 the convergence of the fundamental
mode is presented for the following E2/E1 ratios 0.6,
0.8, 1 respectively. Tabulated results in Table 1 were
obtained for simple supported plate (κ=∞). Frequency
parameter is monotonic from below for all E2/E1 ratios.
Convergence properties are not effected by Asup/Aplt
ratio and they are not shown here. Due to the lack of
the comparable results for different Asup/Aplt and E2/
E1 ratios, only fundamental frequency of simple
supported isotropic plate was compared in Table 1.

Gorman also studied elastically supported plate but
results are given graphically in Ref. [11] .
Table 1 The effect of mesh size on the fundamental frequency

(Case of simple support, κ=∞)

In Figure 4 it is seen that transmissibilites are
obtained as a function of frequency parameter for sets
of Asup/Aplt and γ for κ=1000. One can note that peak
values of transmissibility curves for γ increases while
Asup/Aplt ratio decreases. This means an effect of
damper decreases for Asup/Aplt ratio also decreases.

Figure 3 shows the frequency parameters λ versus
the stiffness parameter κ of the supports for different
Asup/Aplt ratios. The translational stiffness coefficient κ
shows total value of stiffness of translational springs of
the whole system. Springs are uniformly distributed per
unit area of supported region of plate. In Figure 3, the
value of the translational stifness parameter increases,
the frequency parameter also increases monotonically
for all Asup/Aplt ratios. All lines approach zero as their
lower limit as expected. It can also be seen that the effect
of Asup/Aplt ratio on the fundamental frequency of plate
is significiant for κ >100. When κ is smaller than 100,
frequencies of fundamental modes are getting close for
all Asup/Aplt ratios. The fundamental frequency
parameter almost remains the same value for the values
of κ are greater than 106.

Table 2 depicts eigenvalues of frequency parameter
for elastically supported plate for various Asup/Aplt ratios.
Table 2 Fundamental frequency parameters of elastically

supported plate

 Asup/Aplt 
=0,4 

Asup/Aplt 
=0,6 

Asup/Aplt 
=0,8 

Simple 
Supported 

E2/E1=0.6 
κ =1 0,999 0,999 0,999 0,998 
κ =10 3,158 3,148 3,128 3,095 
κ =100 9,886 9,57 8,993 8,335 
κ =1000 27,862 22,389 17,555 14,461 

E2/E1=0.8 
κ =1 0,999 0,999 0,999 0,998 
κ =10 3,16 3,151 3,132 3,104 
κ =100 9,903 9,63 9,112 8,493 
κ =1000 28,256 22,976 18,167 15,037 

E2/E1=1 
κ =1 0,999 0,999 0,999 0,998 
κ =10 3,16 3,153 3,135 3,110 
κ =100 9,913 9,665 9,188 8,603 
κ =1000 28,841 23,451 18,677 15,525 

Mesh size E2/E1=0,6 E2/E1=0,8 E2/E1=1 
10×10 17,057 18,169 19,152 
20×20 17,397 18,561 19,588 
30×30 17,463 18,637 19,672 
40×40 17,485 18,664 19,701 
50×50 17,496 18,676 19,716 
60×60 17,502 18,683 19,723 
70×70 17,505 18,686 19,727 
80×80 17,507 18,689 19,730 
90×90 17,509 18,691 19,732 

100×100 17,510 18,692 19,733 
Elasticity Solution 2xπ2=19,739 
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Fig. 3  The effect of supported area and spring stiffness on the non dimensional fundamental frequency

Figure 5 shows that the peak values of force
transmissibilities occur for variation of damping
parameter. When damping parameter increases
transmissibilities decrease rapidly where the minimum
peak values occur. In Figure 5 plotted for κ=100

minimum peak values occur, smaller magnitudes of γ
than in Figure 5 are plotted for κ=1000. When κ
increases some lines for example line “p” and line “d”
in Figure 5 do not have minimum peak values in the
range of fundamental mode.
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Lines plotted for γ and changes of frequency
parameter are not shown in Figure 5. Table 3 depicts
frequency parameters and transmissibility values
where the peak values occur for the set of κ, γ, E2/E1.
Frequency parameter tends to be close to the natural
frequency of the plate for lower values of γ.

4. CONCLUSIONS

This paper presents, to the authors’ knowledge, the
first known vibration analysis of viscoelastically
supported anisotrpic plate with varying supported area.
The model can be used to simulate the actual boundary
conditions of the plates. A simple numerical method
has been presented to determine natural frequencies of

Fig. 5 Force transmissibilities

Table 3 The frequencies at which the peak values of the force transmissibilities occur

   Asup/Aplt =0,8 Asup/Aplt =0,7 Asup/Aplt =0,6 
   TR λ TR λ TR λ 

κ =100 E2/E1=0.6 γ =5 4,229 8,838 3,699 9,175 3,264 9,417 
  γ =10 2,606 9,461 2,291 9,803 2,025 9,867 
  γ =50 3,029 17,482 2,480 19,719 1,946 22,130 
  γ =100 4,464 19,431 3,114 22,636 2,214 26,929 
         

κ =10 E2/E1=0.6 γ =5 1,288 2,676 1,271 2,606 1,258 2,550 
  γ =10 1,344 15,508 1,314 18,206 1,091 2,662 
  γ =50 2,833 17,966 2,326 20,199 1,830 22,652 
  γ =100 4,387 19,553 3,056 22,725 2,169 26,962 
         

κ =100 E2/E1=0.8 γ =5 3,996 8,957 3,517 9,251 3,132 9,450 
  γ =10 2,476 9,599 2,186 9,840 1,949 9,802 
  γ =50 2,853 17,875 2,359 19,941 1,867 21,916 
  γ =100 4,092 20,569 2,944 24,004 2,143 28,601 
         

κ =10 E2/E1=0.8 γ =5 1,279 2,636 1,264 2,577 1,253 2,530 
  γ =10 1,384 17,335 1,098 3,077 1,088 2,470 
  γ =50 2,655 18,291 2,203 20,279 1,749 22,149 
  γ =100 4,016 20,717 2,889 24,131 2,102 28,687 
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plates. The convergence studies are made. Frequency
parameter is from below for different anisotropy ratios.
Fundamental frequency was determined depending on
the amount of supported area, spring coefficient and
anisotropy. The effect of supported area ratio on
fundamental frequency of plate is significiant for
higher stiffness coefficients of springs for all anisotrpy
ratios. The effect of the amount of supported area and
damping coefficient on response curves is investigated.
The effect of dampers increases when the supported
area increases. The peak values of transmissibilities
were plotted to determine where the minimum peak
values were obtained. Numerical and graphical results
have revealed the effects of supported area variations
on the free and forced vibrations of anisotropic plate.
It is believed that these novel results will be useful to
designers in the various types of practical applications.
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ODREÐIVANJE REAKCIJE MIRNOG STANJA VISKOELASTI^NIH PODUPRTIH
PRAVOKUTNIH, NARO^ITO ORTOTROPNIH PLO^A KOJE SU PODUPRTE NA

RAZLI^ITIM PODRU^JIMA

SA@ETAK

U ovom radu govori se o utjecaju koli~ine poduprtih podru~ja na slobodna i forsirana vibracijska svojstva
anizotropne plo~e. Koriste}i energiju koja se bazira na metodi kona~ne razlike, problem se modelira pomo}u nekog
elementa kona~ne razlike. Zbog va`nosti osnovne frekvencije plo~e, njezino mijenjanje se ispitivalo u odnosu na
koli~inu poduprtog podru~ja na plo~i, te na mehani~ka svojstva materijala plo~e kao i na transakcijski koeficijent
opruga na potpornjima. Reakcija mirnog stanja viskoelasti~no poduprtih plo~a numeri~ki se ispitivala zbog razli~itih
koeficijenata prigušenja i koli~ine poduprtog podru~ja. Dobiveni su numeri~ki rezultati da bi se ispitalo djelovanje
omjera sustava plo~e. U numeri~kim primjerima, parametri prirodne frekvencije i reakcije mirnog stanja na sinusoidno
variraju}u silu odre|eni su za osnovni oblik. Rezultati koji pokazuju djelovanje omjera poduprtog podru~ja na plo~i
pokazuju da je promjena omjera poduprtog podru~ja sustava plo~e vrlo zna~ajna. Napravljene su studije
konvergencije. Izneseni su i mnogi novi rezultati. Razmatrani problemi rješavaju se u okviru rada Kirchhoff-Love
hipoteze.

Klju~ne rije~i: ortotropna plo~a, viskoelasti~ni oslonac, poduprta površina, koeficijent prigušenja, analiza vibracija.
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