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SUMMARY
This paper presents the comparison of two-dimensional and three-dimensional analysis of the reinforced and

prestressed concrete structures. The curved prestressing tendons and reinforcing bars, which are modelled by one-
dimensional finite element, are embedded into adequate two-dimensional and three-dimensional finite elements.
The influence of the prestressing tendons on the concrete is modelled by distributed normal and tangential forces
along the tendons and two concentrated forces at the anchors. The computation of the post-tensioned prestressed
structures is organized in three phases: before, during and after prestressing of the tendons. A few numerical
examples are given to compare the results obtained by these two analyses.
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1. INTRODUCTION

The finite element method offers a powerful and
general analytical tool for studying the behaviour of
reinforced and prestressed concrete structures. During
the last two decades different models and modelling
techniques, material laws and failure criteria including
fracture mechanics have been introduced and exploited
but there is no general consensus which one is the most
suitable for the numerical modelling of reinforced
concrete and prestressed concrete structures.

This paper presents two numerical models for the
computation of reinforced and prestressed concrete
structures. The first one is a model for the analysis of
plane structures, Refs. [1, 2], while the second one is
for the three-dimensional analysis, Refs. [3, 4].

This paper is the extended version of the paper
presented at the 9th International Conference on
Numerical Methods in Continuum Mechanics (NMCM)
held in Zilina (Slovakia) in September 9 to 12, 2003.

Generally, curved prestressing tendons and
reinforcing bars are embedded into a two-dimensional
8-node isoparametric element in the case of two-
dimensional analysis, while a three-dimensional 20-
node element is used for three-dimensional analysis,
Ref. [5]. Prestressing tendons and reinforcing bars are
modelled by one-dimensional isoparametric three-node
elements independently of the concrete element meshes
i.e. the performed analysis, Ref. [6]. The influence of
the prestressing tendons on the concrete is modelled
by distributed normal and tangential forces along the
tendons and two forces concentrated at the anchors,
Ref. [7]. The developed models make it possible to
compute friction losses and losses caused by short-
term deformation of concrete.

The computation for the post-tensioned prestressed
structures is organized in three phases. The load can
be applied incrementally in each phase. In the phase
which precedes the prestressing of the tendons the
structure is computed taking into account the dead load
and one part of the permanent load. Concrete or
reinforced concrete structures are analyzed herein. In
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the prestressing phase the tendons are tensioned
individually. The prestressing force can be applied at
once or incrementally. In the third phase which follows
the tensioning of all tendons, the structure is computed
taking into account the remaining part of the dead load
and all kinds of the live load.

The formulations, necessary for the numerical
modelling of these structures, for two-dimensional and
three-dimensional analysis will be presented in this
paper, Refs. [1-4]. The described models are
implemented in the computer programs PRECON,
Refs. [1, 2] and PRECON3D, Ref. [3]. In both cases,
the advantage of the proposed modelling is complete
freedom in prescribing the location and geometry of
reinforcing bars and prestressing tendons.

A few numerical examples will be given to compare
the results obtained by two-dimensional and three-
dimensional analyses. In each case, the obtained results
have shown good agreement with the published ones,
numerical or experimental, Refs. [1-4, 8].

The full advantage of three-dimensional modelling
over two-dimensional modelling is evident when the
width of the cross-section over the height is not
constant, e.g. when we have I, T, ΠΠΠΠΠ or similar cross-
sections, and when the prestressing tendon is placed
out of the cross-section symmetry plane.

2. DETERMINATION OF TENDON
GEOMETRY

The proposed model for the numerical treatment of
reinforced and prestressed concrete structure consists
of 2D or 3D concrete elements with embedded
reinforcing bars and/or prestressing tendons. The two-
dimensional 8-node elements and three-dimensional
20-node elements are used for concrete modelling and
one-dimensional 3-node elements are used for
reinforcing bars and prestressing tendons.

Prestressed tendons can occupy a general position
within the concrete element; they can be either straight
or parabolic. They can also consist of straight and
parabolic parts (Figure 1 and Figure 2). All tendons
can be simulated in this way, whether straight or
parabolic, if the incontinuity of the first derivation is
obtained during the transfer from the region of one
curvature to another.

For two-dimensional analysis, geometry of the
tendon is described by square parabola. The tendon
position is determined by two boundary nodes
coordinates defined in global coordinate system.

For 3D analysis, geometry of the tendon is described
by the space function of the second order. In this way
any position of the tendon can be described, curved into

one or more planes. This model offers possibilities for
cable description but it requires more input data
necessary for defining its position. In this model the
tendon position is defined by coordinates of two nodes
and the location of the tangent at boundary nodes.

3. THE PRESTRESS FORCE TRANSFER

After defining the tendon position, it is necessary
to determine the influence of the prestress force upon
the concrete element. The tendon force at any cross-
section depends upon the applied force and prestress
losses. Generally, it is necessary to determine the
prestress influence in the internal points of the tendon
if the external forces at the tendon ends are known.
The influence of the prestressing tendons on the
concrete is modelled by distributed normal and
tangential forces along the tendons and two forces
concentrated at the anchors. The developed models
make it possible to compute friction losses and losses
caused by the short-term deformation of concrete.

Figure 3 shows the force acting on an infinitesimal
element ds of a curved tendon. From the equilibrium
equation, the normal and the tangential components of
continuously distributed load can be expressed, for
both models, as:

( ) ( ) ( ) ( ) ( )n t np s k s F s p s p sµ= = ± (1)
Normal load pn(s) at any cross-section of the tendon

depends upon of the curvature of the tendon and the
intensity of the prestress force at that section, while
tangential load pt(s) is the frictional force per unit length.

As it can be seen, for both models, it is important
to determine tendon curvature k(s). For two-
dimensional model the tendon curvature is always a
positive value and can be expressed as:
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The space curvature of the tendon k(s) can be
expressed as:
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As can be seen from Eq. (4), it is necessary to
perform double mapping, firstly into the local
coordinate system ξ−η−ζ, and secondly into the global
coordinate system x-y-z of the 3D concrete element.
We have to define components d2x/ds2, d2y/ds2 and
d2z/ds2 for this operation:
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a) two-dimensional analysis b) three-dimensional analysis

Fig. 3  The differentially small arc element ds of the tendon and acting forces
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Fig. 1  Possibility of tendon determination for two-dimensional analysis

Fig. 2  Possibility of tendon determination for three-dimensional analysis
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4. DETERMINATION THE EQUIVALENT
NODAL FORCES

In the general case, the tendon can occupy a general
position within 2D or 3D concrete elements. The point
in which the tendon is anchored is located on the
boundary plane of the concrete element not necessarily
at its nodes.

The influence of the prestressed tendon upon the
concrete is exerted by two compressive forces at the
ends of the tendon and the distributed normal and
tangential stress along the tendon.

In accordance with the finite element method
approach in Ref. [9] the acting forces, continuously
distributed normal and tangential load along the tendon
and the two forces concentrated on the anchors, have
to be transferred to the nodes of the 2D or 3D concrete
element. So, we have to determine equivalent nodal
forces.

4.1 Equivalent nodal forces due to anchorage
forces

The concentrated forces act in the points where the
prestressing forces are applied. The tensile stresses
occur in the tendon during the prestressing phase. After
the anchorage the tendon tries to return to its original
position what causes compression on the concrete
element. This influence is modelled by a concentrated
compressive force which acts in the point of
anchorage. The action force point coordinates are
defined in the global and the line coordinate system
with the geometry of the tendon. It is necessary to map
this point into the local coordinate system of the parent
concrete element to determine equivalent nodal forces
of the 2D or 3D concrete element

For 2D analysis the equivalent force at node i
(i=1,...,8), due to the concentrated force on the anchor,
can be expressed as:
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where Fx and Fy are components of the force in the
direction of the axes x and y in a global coordinate
system, and Ni(ξ,η) is the value of the shape function
of a two-dimensional 8-nodes element at the point
where the force is acting.

For three-dimensional analysis the number of
equations is much greater. It is necessary to compute
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three components Fx, Fy and Fz in the direction of the
axis x, y and z in a global coordinate system and we
are using shape functions Ni(ξ,η,ζ) for a three-
dimensional 20-node element. It can be expressed as:
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Fig 4.  The equivalent nodal forces due to the anchorage forces
for two-dimensional and three-dimensional analysis

4.2 Equivalent nodal forces due to
distributed load along tendon

Due to the prestressing, beside the concentrated
compressive forces at the anchorages, there are forces
along the tendon which are modelled as distributed
load with its normal and tangential components. These
values are defined in the line coordinate system χ. As
the problem is solved with the FEM approach these
forces have to be transferred into the nodes of the 2D
or 3D concrete element (see Figure 5), i.e. we have to
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a) for two-dimensional analysis

For three-dimensional analysis the same
components are:
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For both models by performing Gauss numerical
integration of the Eqs. (10) and (11) one can obtain
the values of the distributed load components along
the tendon in the Gauss points of the 1D tendon
element (Px g.p., Py g.p. and Pz g.p.).

To determine the influence of this distributed load
along 1D tendon element on the concrete element it is
necessary to map the coordinates of the Gauss points
from the global coordinate system to the local
coordinate system of the parent concrete element.
Finally, the components of the equivalent nodal forces
due to the distributed load along the tendon defined in
the global coordinate system can be expressed as:

* for two-dimensional analysis:
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* for three-dimensional analysis:
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where Ni(ξg.p., ηg.p.) is the shape function for two-
dimensional 8-node element and Ni(ξg.p., ηg.p., ζg.p.)
is the shape function for three-dimensional 20-node
element, Ref. [9].

At the end all influences will be summed up.
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determine adequate equivalent nodal forces. It is
necessary to map this load from the local line
coordinate system into the global coordinate system x-
y or x-y-z, and afterwards to define components of
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Fig. 5  Equivalent nodal forces due to the distributed load
along the tendon for two-dimensional and three-dimensional

analysis

The force along the tendon changes during the
prestressing, so, we have to determine the increments
of the normal and the tangential components in the
direction of the global coordinate axes. For two-
dimensional analysis it is dx and dy and for three-
dimensional analysis it is dx, dy and dz. The total forces
along the tendon in the direction of the global
coordinate axes are obtained by the numerical
integration. For two-dimensional analysis, these
components can be expressed as:

x n t
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4.3 Possibilities of tendon prestressing

Tendons can be prestressed at one end or at both
ends. If the tendon is prestressed at one end applying
force FA, then force FB at the other end of the tendon
can be computed according to expression (14) by
integration along the entire tendon length:

s

A

k( s ) ds

AF( s ) F e
∫

= (14)
The force at any cross-section of the tendon and

the distributed load can be obtained directly according
to Eqs. (1) and (14). If the tendon is prestressed from
one end, and if the forces FA and FB at both tendon
ends are known, then the friction coefficient can be
computed according to expression:

3
iA

i 1B i

ds( )F1 ln , g( s )
g( s ) F r( )

χ
µ

χ=

= = ∑ (15)

If the tendon is prestressed on both ends, the force
decreases, due to friction between the tendon and
concrete, if the distance from the end is increased. In
symmetrical prestressing, the problem can be simply
solved since the decrease in force is the greatest at the
middle of the beam. For a beam with length l the force
in the tendon at distance l/2 can be calculated
according to Eq. (14), whereas the value g(s) is
obtained by integration from the beginning to the
middle of the beam.

If the tendon is asymmetric or if the prestressing
forces at the tendon ends are not equal (FA≠FB), the
procedure is more complex. The minimum force will
occur at the cross-section which has not been
previously known. Let us denote by x the distance of
that cross-section from end A, and by l-x the distance
from end B. The force at that cross-section Fmin can be
computed according to forces FA or FB by using one of
the following expressions:

x l x

A B

k( s )ds k( s )ds
L R

min A min BF F e ; F F e
µ µ

−

− −

= =
∫ ∫ (16)

The forces should be equal regardless of the ends
at which they were computed. By equating terms in
Eq. (16) we shall obtain an equation where the
integration limit is an unknown value. This equation is
solved numerically. In this model, asymmetrical
prestressing is performed by taking a cross-section with
the greatest decrease in force. The prestressing force
in a cross-section assumed according to Eq. (16) is
calculated before computing the entire structure.
According to the ratio between forces FLmin and FRmin,
the assumed cross-section is moved either to the left
or to the right. This procedure is repeated for each
tendon separately in the phase of input data
preparation. Subsequently, the structure is computed
and the possible difference between the two forces
Fmin to the left or to the right from the selected cross-
section can be neglected.

5. NUMERICAL EXAMPLES

Example I
The described modelling of the reinforcing bars and

prestressing tendons in 2D and 3D are implemented in
the computer programmes PRECON and
PRECON3D. The performance of the proposed
models is illustrated by the solution procedure of one
example: prestressed non-prismatic girder clamped at
one end and extended over the fixed support at the
other end, see Figure 6.

The geometrical and material data are taken from
Ref. [13]. The modulus of elasticity of the concrete is
Ec=28000 N/mm2, Poisson ratio is 0.25, the modulus
of elasticity of the tendon is Es=22400 N/mm2 and the
tendon cross-section area is As=2000 mm2.
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Fig. 6  Geometry of the girder and loadings
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The load is considered in three phases:

Phase I
In the first phase the structure was computed taking

into account the load it carried before the prestressing
of tendons, the girder’s own weight g=25 kN/m3 and a
uniformly distributed dead load q=20 kN/m. A concrete
or reinforced concrete structure is analyzed herein.

According to the known geometry and load we
form the global stiffness matrix KI for Phase I
according to expression:

KI=KC+KR (17)
where KC is the concrete stiffness matrix and KR is the
reinforcement stiffness matrix, which is obtained by
the numerical integration along the reinforcing bar
according to expression:

T
R R R R R

dsE A d
dχ

χ
χ

= ∫K B B (18)

In Eq. (18) BR is a strain matrix of the
reinforcement element, ER is the tangential modulus
of elasticity of the reinforcement, AR is the cross-
section area of the bar, ds is a differential element of
the length and ζ is the independent normalized
coordinate.

Global load vector (vector of residual forces) FI is
determined according to expression:

FI=FC+FR (19)
where FC is a vector of external forces and residual
forces on concrete element, while FR is vector of
residual forces due to reinforcement strain:

T
R R R R

dsA d
dχ

σ χ
χ

= ∫F B (20)

In Eq. (20) σR is the normal stress in reinforcement.

Phase II
Generally, in the second phase the tendons are

tensioned individually. The prestress force can be
applied at once or incrementally, and, thus, gradual
prestressing procedures can be simulated. The
previously applied force can be subsequently
decreased, which is sometimes done in practice, in
order to reduce high initial stress in one part of the
tendon. During the prestressing phase the respective
tendon is not treated as a structural element. Its
geometry is used actually to compute the initial
influence of prestressing which is modelled as a
fictitious distributed load. In subsequent iteration, the
tendon functions as a classical reinforcement with a
given initial stress. During successive prestressing of
tendons, the tendon which is currently being
prestressed does not influence the stiffness of the
structure, while the previously prestressed tendons take
over the stresses as a classical reinforcement.

The global stiffness matrix in this phase can be
presented in the following form:

i 1
i j
II I P

j 1

−

=

= + ∑K K K (21)

where:
i - tendon index, i.e. index of a group of tendons

which are being prestressed,
i
IIK  - global stiffness matrix at the moment of
prestressing the i-th group of tendons,

IK  - global stiffness matrix of Phase I,
j

PK  - stiffness matrix of one tendon or group of
tendons which started functioning as a classical
reinforcement.

The loading vector can be presented in the
following form:

i
i j
II I II

j 1
∆

=

= +∑F F F (22)

where:
i

IF  - global vector of loading at the moment of
prestressing the i-th group of tendons,

IF  - load vector after Phase I,
i

II∆F  - vector of equivalent load which represents
the influence of the prestressing force of a given
tendon upon the concrete structure.

When the prestressing force is introduced into the
structure gradually, vector i

II∆F  is applied
incrementally and not at once.

In this example, Phase II is the prestressing phase
and the loading includes all loads from Phase I and a
prestressing force F=2000 kN applied at one end of
the tendon while the other end is anchored into
concrete body.

Phase III
The prestressing of all tendons is followed by the

third phase in which the structure is computed taking
into account the remaining part of the dead load and
the live load. Concrete, reinforcement and all
prestressed tendons which function as a classical
reinforcement, contribute to the stiffness of the
structure. The load is applied incrementally until
failure. The stiffness matrix in this phase KIII is:

n
j

III C R P
j 1=

= + + ∑K K K K (23)

where n is the number of prestressed tendons, i.e. the
number of prestressed tendon groups.

The loading vector can be presented as:
n

j
III I II III

j 1
∆ ∆

=

= + +∑F F F F (24)

where ∆FIII is the part of the loading vector which
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resulted from the load taken over by the structure after
completed prestressing. When the load is applied
incrementally vector ∆FIII is applied in increments.

In this numerical example Phase III is the phase
considering service-load conditions and the loading
includes all loads from Phase II, a uniformly
distributed live load p=20 kN/m and a concentrated
load P=200 kN.

This example was previously analysed in Ref. [10]
in the linear domain with 2D discretisation then it was
analysed in the linear and non-linear domain with 2D
discretisation by numerical programme PRECON and
finally in the linear domain but with 3D discretisation
with the developed computer programme
PRECON3D. Table I shows the support reactions in
cross-section A calculated by the mentioned three
approaches in the linear domain.

The shown results (Table I) for Phase I agree well
for all three approaches. However, the results for
Phases II and III differ, what was expected, because
the analysis with the developed approach is three-
dimensional, Ref. [3], while the analyses with two
other approaches, Refs. [2,3], are two-dimensional
(plane stress conditions).
Table 1. Support reactions at cross-section A (Ri [kN],

M [kNm])

 PRECON3D [3] Ref. [13] PRECON [2] 

Rx = 106 Rx = 105 Rx = 107 
Rz = 179 Rz = 180 Rz = 180 

Phase I 

M = 297 M = 298 M = 296 
Rx = -430 Rx = -479 Rx = -469 
Rz = 275 Rz = 273 Rz = 273 

Phase II 

M = 677 M = 647 M = 655 
Rx = -210 Rx = -260 Rx = -251 
Rz = 430 Rz = 487 Rz = 485 

Phase 
III 

M = 1076 M = 1093 M = 1093 
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Example 2
Prestressed beams and/or girders used in everyday

engineering structures generally have I, T, ΠΠΠΠΠ or similar
cross-sections. The beams and/or girders with those
cross-sections due to apparent three-dimensional stress
state cannot be analyzed exactly with the two-
dimensional model and code which was one of the
reasons for developing 3D model and code, Ref. [3].

In this example, prestressed I-beam taken from Ref.
[10] is analyzed. The beam geometry and loading are
shown in Figure 8.

The material characteristics of the I-beam
according to Ref. [10] are: the modulus of elasticity
of the concrete Ec=35000 N/mm2, Poisson’s ratio
of the concrete ν=0.25, the modulus of elasticity
of the prestressed tendon Es=210000 N/mm2 and
the prestressed tendon cross-sectional area
As=1962.5 mm2.

The I-beam concrete structure is discretised with
550 three-dimensional isoparametric 20-node finite
elements and with 55 one-dimensional isoparametric
3-node elements for tendon discretisation.

Figure 9 shows a deformed configuration of the
I-beam under prestressing force only while Figure
10 shows a deformed configuration of the I-beam
under concentrated force P=200 kN acting after
prestressing.

Fig. 7  Load versus deflection at point C

Non-linear analysis with 2D discretization of the
structure is performed with the programme PRECON
and the deflection of the point C is observed up to the
failure of the structure. With programme PRECON3D
only the linear analysis is performed by increasing load
intensity factor. Figure 7 shows load-deflection curves
of the point C for both approaches and a very good
agreement of the obtained results in the linear part can
be seen.
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Fig. 9  Deformed configuration of the I-beam under prestressing force

Fig. 10  Deformed configuration of the I-beam under concentrated force acting after prestressing occur

Fig. 8  Geometry of the analysed I-beam
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The load-deflection diagrams for three different
analyses: (1) numerical analysis according to Ref. [10];
(2) experimental investigations according to Ref. [10];
and (3) numerical analysis according to the presented
proposed model and the computer programme
PRECON3D, Ref. [3], are shown in Figure 11. These
lines present mid-span deflection under the second
loading case. A very good agreement of the obtained
results for all three analyses in the linear domain is
evident.

Fig. 11  Load-deflection diagrams for different analyses

6. CONCLUSIONS

This paper presents a numerical treatment of
reinforcing bars and prestressing tendons for two-
dimensional and three-dimensional numerical
modelling of reinforced and prestressed concrete
structures. The advantage of the proposed modelling
is a complete freedom in prescribing the location and
geometry of reinforcing bars and prestressing tendons.

The described modelling of the reinforcing bars and
prestressed tendons is implemented in two computer
programmes, for two-dimensional analysis PRECON
and three-dimensional analysis PRECON3D. The
numerical examples, a prestressed non-prismatic girder
clamped at one end and extended over the fixed
support at the other end and a prestressed I-beam, are
given to illustrate the possibilities of the developed
models.

A very good agreement of the results obtained by
2D and 3D analyses is evident from the first example.
From these results it can be seen that 2D programme is
sufficient for describing structures in plane strain or
plane stress state. Furthermore, 2D programme
requests fewer input data and shorter running time. So,
2D programme is to be recommended when the
structure can be appropriately described two-
dimensionally, i.e. when the width of the structural
element cross sections is constant over the height.

The full advantage of the proposed 3D modelling
is evident when the width of the cross-section over the
height is not constant, e.g. when we have I, T, ΠΠΠΠΠ or
similar cross-sections.
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USPOREDBA DVODIMENZIONALNE I TRODIMENZIONALNE ANALIZE ARMIRANIH I
PREDNAPETIH BETONSKIH KONSTRUKCIJA

SA@ETAK

U ovom radu prikazana je usporedba dvodimenzionalne i trodimenzionalne analize armiranih i prednapetih
betonskih konstrukcija. Zakrivljeni prednapeti kabel i armatura koji su modelirani kao jednodimenzionalni 3-~vorni
linijski element ugra|eni su u odgovaraju}i dvodimenzionalni 8-~vorni odnosno trodimenzionalni 20 (27) ~vorni
kona~ni element. Utjecaj prednapinjanja je modeliran kao jednoliko raspodijeljeno optere}enje du` kabela i
koncentrirane sile na sidrima. Analiza prednapete konstrukcije  omogu}ena je u tri faze: prije prednapinjanja, za
vrijeme prednapinjanja i nakon prednapinjanja. Prikazana su dva numeri~ka primjera i uspore|eni rezultati
dobiveni dvodimenzionalnom i trodimenzionalnom analizom.

Klju~ne rije~i: MKE, armiranobetonske konstrukcije, prednapete konstrukcije, fazno prednapinjanje.
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