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1. INTRODUCTION

The aim of this paper is to investigate the effect of
maximal allowable shortage level constraint on the
economic order quantity (EOQ) model. The EOQ
model was first introduced several decades ago to assist
corporations in minimizing overall inventory costs; it
employs a mathematical modelling to balance the
inventory holding and setup costs, and derives an
optimal order quantity that minimizes total inventory
costs. Regardless of its simplicity, the economic order
quantity model is still applied industry-wide today [1].
In real-life inventory control and management, due to
certain internal orders of parts/materials and various
operating considerations, the planned backlogging is
the strategy to effectively minimize overall inventory
costs. While allowing backlogging, abusive shortage in

an inventory model, however, may cause an
unacceptable service level and turn into possible loss
of future sales (because of the loss of customer
goodwill). Therefore, the maximal allowable shortage
level per cycle is always set as an operating constraint
of the business in order to attain the minimal service
level while deriving the optimal order policy for
inventory model.

A considerable amount of research has been carried
out to address the service level constraint issue.
Examples of them are surveyed below.

Schneider [2] examined a (Q,s) model, he
determined the optimal value of the order quantity Q
and the reorder point s in which the average annual
costs of inventory and orders are minimal under the
condition that a certain service level is reached. De
Kok [3] considered a lost-sales production/inventory
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control model with two adjustable production rates to
meet demand. He obtained the practical approximations
for optimal switch-over levels to such a model under
the service level constraints. Kelle [4] derived the
optimal service levels in multi-item inventory systems.
He formulated exact mathematical models and
developed an inventory control program package with
many modules to deal with the multi-item inventory
systems with aggregate service levels. Boylan and
Johnston [5] studied the relationships between different
service level measures for inventory systems. They
analyzed six of the most frequently used service
measures, their relationships, and possible conversion
to a common measure. Hopp et al. [6] found an
effective stocking policy for a part distribution center
supporting field maintenance of mail processing
equipment. The objectives of their policies are to
minimize overall inventory investment at the
distribution center subject to constraints on customer
service and order frequency. Ouyang and Wu [7]
developed an algorithm to find the optimal order
quantity and optimal lead time for an inventory model
with a service level constraint and when the probability
distribution of the lead time demand is normal.
Bashyam and Fu [8] studied the optimization of (s,S)
inventory systems with random lead times and a
service level constraint. Their work was based on
simulation and presented computational results for a
large number of test cases, and they concluded that
the vast majority of cases come within 5% of estimated
optimality. Metters and Vargas [9] considered a single
product, single level, stochastic master production
scheduling (MPS) policies on costs, service level, and
schedule changes. The data envelopment analysis
(DEA) methodology is extended to aid the evaluation
of the simulation results and they concluded that the
dual-buffer control systems outperform the existing
policies. Chen and Krass [10] investigated inventory
models with minimal service constraints. They
showed that the minimal service level constraint
(SLC) model was qualitatively different from their
shortage cost counterparts and the transformation
from SLC model to a shortage cost model may not be
always possible.

This paper is inspired by the work of Chen and
Krass [10] and it investigates the optimal order policy
for the economic order quantity model with maximal
permitted shortage level. The relationship between the
imputed backorder cost and the maximal shortage level
is derived for judging whether or not the service level
is achievable. In the case that the required service level
is not attainable, the intangible backorder cost is
introduced to enable the newly derived optimal order
policy to accomplish the necessary service level as well
as to minimize overall inventory costs.

2. THE BASIC MODELS AND
MATHEMATICAL ANALYSIS

The economic order quantity model for single
commodity is the simplest and most fundamental of
all inventory models. As mentioned earlier, regardless
of its simplicity, the EOQ model is still applied
industry-wide today [1]. This paper studies the effects
of maximal allowable shortage level constraint on
EOQ model. The following notations are used in our
analysis:

λ = demand rate, in units per unit time,
Q = order quantity per cycle in the EOQ model

with shortage not permitted,
Qb = order quantity per cycle in the EOQ model

with shortage allowed and backordered,
B = allowable backorder level in the EOQ model

with backlogging permitted,
K = fixed ordering cost per order,
C = purchasing cost per item ($/item),
H = holding cost per item per unit time ($/item/

unit time),
B = backordering cost per item per unit time,
TCU(Q) = total inventory costs per unit time in

the EOQ model,
TCU(Qb,B) = total inventory costs per unit time

in the EOQ model with backlogging
permitted.

2.1 Formulation of the classic EOQ model
with backlogging permitted

The EOQ model assumes that all items purchased
are received instantaneously. Figure 1 depicts its on-
hand inventory level and allowable backorder level.

Fig. 1  On-hand inventory of the EOQ model with shortage
allowed and backordered

The total inventory cost per unit time, TCU(Qb,B)
is presented by equation:
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and by minimizing the cost function TCU(Qb,B), one
obtains the optimal order policy, Qb* and B* [11, 12,
13] as shown in equations:
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2.2 Formulation of the classic EOQ model
with shortage not permitted

For the EOQ model with shortage not permitted,
the cycle length simply is T=t1 (for t1 please refer to
Figure 1). The total inventory cost per unit time,
TCU(Q), is presented by equation:

( ) K h QTCU Q c
Q 2
λλ ⋅

= ⋅ + + (4)

 By minimizing the cost function TCU(Q), one
obtains the optimal order quantity Q* [11, 12, 13] as
shown in the next equation:

2K*Q
h
λ

= (5)

2.3 The effects of the backlogging and the
service level constraint

Property 1. The total inventory cost per unit time
for the EOQ model with shortage not permitted is
always greater than or equal to that of the EOQ model
with shortage allowed and backordered. That is
TCU(Q)PTCU(Qb,B), for any given Q=Qb.

Proof. Assume that Q=Qb, employing Eqs. (1) and
(4), one obtains:
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Then from Eq. (3), because:
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therefore, one obtains:
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Property 1 confirms that it is better off to permit
shortage. While allowing backlogging, abusive
shortage in an inventory model, however, may cause
an unacceptable service level and turn into possible loss
of future sales. Hence, the maximal allowable shortage
level per cycle is always set as an operating constraint
of the business in order to attain the minimal service
level. Suppose that we set α to be the maximum
proportion of shortage permitted time per cycle (that
is the service level = (1−α) %), then:

2

1 2

t
t t

α =
+ (6)

2

11
t
t

α
α

=
− (7)

From Figure 1, we obtain 1
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Hence, Eq. (7) becomes:
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By substituting B in Eq. (8), one obtains the
following:
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or:
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Assume that:
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Equation (10) represents the relationship between
the imputed backorder cost and the maximum
proportion of shortage permitted time per cycle. In
other words, when the service level (1−α)% of the
EOQ model is set, the corresponding backorder cost
can be obtained. Hence one can utilize this information
to determine whether or not the service level is
achievable.

Let bt be the tangible backorder cost per item, if
bt>f(α) then the service level (1−α)% is achievable;
otherwise, we need to increase the tangible backorder
cost to the “imputed backorder cost” and then use it to
derive the new optimal operating policy (in terms of
Qb* and B*), so that the overall inventory costs can be
minimized and the service level constraint will be
attained. Let bi be the adjustable intangible backorder
cost (per item per unit time), then bi should satisfy the
following condition in order to attain the (1−α)%
service level:

( ) i tb f bα⎡ ⎤−⎣ ⎦≥ (12)

Therefore, by using b=f(α) one can derive the new
optimal order quantity Qb* and the optimal backorder
level B*. Figure 2 depicts the relationship between f(α)
and α, and pinpoints the value of f(α=0.3) in
accordance with service level constraint set at
minimum of 70%. Here, 70% of service level is
selected arbitrarily for demonstration purpose.
Practitioners should choose a correct service level set
by his/her firm.
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Fig. 2  Variation of permitted shortage rate effects on
backorder cost

3. NUMERICAL EXAMPLES AND
DISCUSSION

A firm purchases an item from its supplier. It wants
to determine the relationship between the adjustable
intangible shortage cost and the maximum allowable
proportion shortage time per cycle. This item has
experienced a relatively flat demand of 4,000 units per
year. The accounting department has estimated that it
costs $90 to initiate a purchase order and each unit
costs the company $2.4. The service level of this item,
according to the company’s policy, is set at 70% or
above (i.e. the maximum proportion of shortage
permitted time per cycle α is 0.3). The allowable
shortage items are backordered at a cost of $0.2 per
item per year and the cost of holding is $0.6 per item
per year. Thus, we have the following:

λ = 4,000 units per year,
K = $90 per order purchased,
C = $2.4; unit purchase price,
H = $0.6 per item per unit time,
Bt = $0.2 per item backordered per unit time (the

tangible backorder cost),
α = 0.3; the maximum proportion of shortage

permitted time per cycle.
First let b=bt, from Eqs. (1) through (3), one obtains

the overall costs TCU(Qb*,B*) = $9,929, the optimal
order quantity Qb*=2,191, and the optimal backorder
level B*=1,643. Convexity of the total cost function
for this example is displayed in Figure 3.

Also if shortages are not allowed, from Eqs. (4) and
(5) we obtain the total cost TCU(Q*)=$10,257 and the
optimal order quantity Q*=1,095. One notices that the
EOQ model with backlogging permitted has a lower
overall cost than that of the EOQ model with no
shortages allowed, as proved by the Property 1 (see
Figure 4).

In this example, suppose we ignore the 70% service
level constraint for now, then from Eq. (6) the
proportion of shortage time per cycle is α =0.75. This

represents a 25% service level only. In order to achieve
70% service level, one can use the proposed Eqs. (11)
and (12) and find that bi=f(α)−bt =1.4−0.2=1.2.

Then, by using b=(bt+bi)=1.4 and Eqs. (1) through
(3), we can re-compute the optimal order quantity
Qb*=1,309, the optimal backorder level B*=393, and
the optimal overall costs TCU(Qb*,B*)=$10,150.

Fig. 3  Convexity of the total cost function for the EOQ model
with backlogging permitted

Fig. 4  A comparison between cost functions TCU(Q) and
TCU(Qb,B)

Table 1 shows variation of α effects on the optimal
operating policy, TCU(Qb*,B*), the TCU(Qb*,B*)
excluding an intangible backorder cost, and the price
for raising the service level from 25%.

From Table 1, one notices that though the
TCU(Qb*,B*) for 70% service level is $10,150, if we
exclude the intangible backorder cost bi (which merely
is helping us to achieve the 70% service level) from
the computation of Eq. (1), we will obtain the actual
cost $10,079. Comparing to $9,929, there is an
increase of $150 in cost. In other words, $150 is the
price that we pay for raising the service level from 25%
to 70% (see both Table 1 and Figure 5 for details). One
also notices that as the service level (1−α)% increases,
the cost function TCU(Qb*,B*) and the price for
raising the service level increase too.
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Table 1 Variation of α effects on optimal operating policy, TCU(Qb*,B*) and TCU(Qb*,B*) excluding the intangible backorder cost
and price for raising the service level

constraint. As the result, we derive the relationship
between the imputed backorder cost and the maximal
proportion of shortage permitted time per cycle.
According to this relationship, the practitioners can
determine on whether or not the service level is
achievable. Another equation is also presented in this
study for calculating intangible backorder cost for the
situation when the required service level is not
accomplishable. By utilizing this intangible backorder
cost, the newly derived optimal order policy is able to
achieve the necessary service level as well as to
minimize the overall inventory costs.

For future research, one interesting direction among
others will be to investigate the effect of service level
constraint on an EOQ model with imperfect quality
items produced.
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4. CONCLUDING REMARKS

In real-life inventory control and management, due
to the existence of internal orders and other operating
considerations, the planned backlogging is the strategy
to effectively minimize overall inventory costs. While
allowing backordering, abusive shortage in an inventory
model, however, may cause an unacceptable service
level and turn into possible loss of future sales.

This paper studies the optimal order policy for the
EOQ inventory model with maximal shortage level
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POLITIKA OPTIMALNOG NARU^IVANJA UTEMELJENA NA MODELU OPTIMALNE
KOLI^INE NARUD@BE UZ OGRANI^ENJA MINIMALNE KOLI^INE NA SKLADIŠTU

SA@ETAK

Ovaj rad istra`uje politiku optimalnog naru~ivanja utemeljenu na modelu optimalne koli~ine narud`be (EOQ -
Economic Order Quantity) uz maksimalno ograni~enje minimalne koli~ine na skladištu. Prvo se dokazuje da je
ukupan trošak zaliha po jedinici vremena u klasi~nom EOQ modelu (uz dozvoljene ponovne narud`be) manji ili
jednak onom kod EOQ modela, pri ~emu nije dozvoljeno spuštanje ispod minimalne razine zaliha. Drugo, odnosi
izme|u ura~unatog troška ponovne narud`be i maksimalnog udjela vremena u kojem se ne odr`ava minimalna
koli~ina zaliha po proizvodnom ciklusu se izra~unava za potrebe odlu~ivanja s obzirom na ~injenicu mo`e li se
ostvariti tra`ena razina proizvodnje/pru`anja usluga. Na kraju rada se predla`e jednad`ba za izra~un nevidljivog
dijela troškova ponovnog naru~ivanja u slu~aju kada nije mogu}e posti}i tra`enu razinu proizvodnje/pru`anja usluga.
Uklju~ivanjem nevidljivog dijela ponovne narud`be, novoformuliranom politikom optimalne narud`be posti`e se
tra`ena razina proizvodnje/pru`anja usluga, te minimiziraju ukupni troškovi zaliha. Numeri~kim se primjerom pokazuje
prakti~na uporaba predlo`enog modela.

Klju~ne rije~i: inventar, najkra}i zakonski rok, razina usluge, EOQ model, nevidljivi troškovi.
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