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SUMMARY
This paper describes a novel 2D BEM numerical model for analyzing buried power cables thermal field. The

total number of power cables and homogeneous subdomains inside the cable trench are completely arbitrary. A
novelty in this paper is that a part of unbounded external boundary (earth surface) has been modelled using a new
type of boundary elements named infinite boundary elements. Besides, the efficiency of the numerical method
developed is based on successful application of analytical integration along linear boundary elements and infinite
boundary elements. Using double and multiple global node technique, the correct numerical approximation of the
normal flux density at the points with its physical discontinuity has been made possible. Illustrative numerical
examples with known analytical solutions are solved.
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1. INTRODUCTION

Computing the maximum current that power cables
can sustain from a thermal point of view without the
deterioration of any of their mechanical and/or
electrical properties is an important design aspect of
underground power cables. A typical arrangement of six
buried single-core power cables is shown in Figure 1.
Power losses refer to the heat generated in cable
conducting parts (phase conductors and sheaths) and
in cable insulating parts, but the dielectric losses in
insulation are neglected. Power losses in phase
conductors and sheaths mainly depend on current
values. Computing losses in electric power cables [1]
is the base for analysis of power cables thermal field.
In other words, the heat input rate per unit length of
the cable is the significant input datum for analysis of
temperature distribution around the underground
power cables.

Fig. 1  A typical single-core power cables arrangement

In power cables design, a steady-state thermal
analysis has two main variants. The first of them is the
temperature rise analysis where desired currents are
specified and maximum attained temperatures are
computed, and the second variant is the ampacity
analysis where desired temperatures are specified and
maximum attained currents are computed.
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The computation of underground power cables
thermal field has been the subject of many papers [2-
14]. Significant number of developed numerical
models is based on finite difference method [2-6] or
finite element method [7-13]. A small number of
numerical models is based on boundary element
method [14]. In papers [11-13], thermal analysis is
based on combination of finite elements and mapped
infinite elements. Using mapped infinite elements, an
unbounded domain is modelled.

The purpose of this paper is to develop a more
accurate 2D BEM model for computing the power
cables thermal field. In the considered numerical
model, special attention was focused on modelling the
infinite boundaries.

2. NUMERICAL MODEL

2.1 Description of illustrative example

2D boundary element method is used to compute
the cables surface temperature based on the heat input
rate. The application of the method is illustrated for
buried singlecore cable case (Figure 2). In this
example, the heterogeneous domain Ω is subdivided
into two homogeneous and isotropic subdomains.
Singlecore cable is located in the rectangular trench
(subdomain Ω1), and subdomain Ω2 is unbounded
native soil. It is convenient to assume that the
temperature on the earth surface is constant and equal
to the ambient temperature (Tamb). In other words, the
temperature on the earth surface is equal to the
temperature at infinity.

The Dirichlet boundary condition:

ambT T= (1)
is homogenized in such a way that a new temperature
function is defined:

ambT T T= − (2)
For new temperature function T , the Dirichlet

boundary condition on the earth surface and at infinity
is equal to zero (T 0= ). Firstly, the temperature T  is
computed and then by using  Eq. (2) temperature T is
obtained.

2.2 Application of the BEM to 2D
temperature Poisson problem

The  temperature distribution inside of the
subdomain Ωp is described by Poisson differential
equation:

( )
NSC

s
ps s

ps 1

W
T    r r∆ δ δ

κ=

= − ⋅ ⋅ −∑ (3)

where:
pκ - thermal conductivity of the medium p,

sW - the total heat input rate of the sth cable (source),
r - the position vector of the field point,

sr - the position vector of the source point,
( )sr rδ − - the Dirac delta function,

NSC- the total number of sources,

p
ps

p
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=
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δ
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For the discretization of the external and internal
boundaries, linear boundary elements with two local
nodes were used (Figure 3). Due to simplicity, in
Figure 3, the boundaries discretization is realized with
a small total number of boundary elements.

Fig. 2  Geometry of the illustrative single-core power cable
case
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Fig. 3  Discretization of the external and internal boundaries

In intersection points of boundary elements, in
which there is a continuity of the normal flux density,
only one global node is located. However, at the
boundary elements intersection point in which there is
a discontinuity of the normal flux density, the double
node technique must be used, i.e. two global nodes are
located at such a point.

At the intersection points of several boundary
elements, the correct approximation of the normal flux
density imposes the use of the multiple node technique,
i.e. at the intersection point of n boundary elements, n
global nodes are located.

The unbounded external boundary has been
modelled using a new type of boundary element with
only one local node (elements 7 and 10 in Figure 3),
which can be named infinite boundary element.

The temperature kT at the point Pk(xk,yk), which is
located within subdomain Ωp or on its boundary, is
described by the following expression:
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where Ck is the constant [15], which depends on the
position of the point Pk, NSD is the total number of
subdomains,

pr pr

 1        if     p r
a  0       if there is no interface  

-1       if   p>r

Γ
⎧ ≤
⎪

= ⎨
⎪
⎩

is the constant depending on the normal prn  direction,

p

r

T , p r,
n

q
T , p r,
n

∂κ
∂

∂κ
∂

⎧
⋅ ≤⎪

⎪⎪= ⎨
⎪
⎪ ⋅ >
⎪⎩

is the flux density along normal vector prn , while κp
and κr are material conductivities. In developed
numerical model it has been assumed that the unitary
normal vector prn to the interface between two sub-
domains has its direction from subdomain p to
subdomain r, where p r≤ .

The weighted function:

( ) ( )
k 2 2

k k

1 1  ln   +  A
2 x x y y

Ψ
π

= ⋅
⋅ − + −

(5)

is a fundamental solution of the Poisson equation, Eq.
(3), where:

( )max
1A  ln 100 d

2 π
= ⋅ ⋅

⋅
(6)

is the constant which has been introduced to improve
numerical stability of the algorithm, and dmax is the
maximum distance between the nodes of the boundary
element grid.

According to Eqs. (5) and (6), the weighted
function ψks, introduced by Eq. (4), is described by
the following equation:

( ) ( )
max

ks 2 2
k s k s

100 d1  ln
2 x x y y

ψ
π

⋅
= ⋅

− + −
(7)

2.3 Local co-ordinate system of the boundary
element

In this paper, the usual numerical integration along
the single boundary element is totally substituted by
analytical integration. That was the reason to introduce
a boundary element local co-ordinate system (u,v)
according to Figure 4. Local co-ordinates (u,v) of the

point P are computed from its global co-ordinates (x,y)
according to the following equations:

( ) ( ) ( ) ( )M 2 M M 2 M
2u x x x x y y y y= ⋅ − ⋅ − + − ⋅ −⎡ ⎤⎣ ⎦

(8)

( ) ( )2 2 2
M Mv x x y y u= − + − − (9)

1 2 1 2
M M

x x y yx ; y
2 2
+ +

= = (10)

where  is the boundary element length; (x1, y1) are
global co-ordinates of the local node 1 and (x2, y2) are
global co-ordinates of the local node 2.

pr k

NSD NSC
k k s

k k pr ks ps
p pr 1 s 1\P

q WC T a T d
n

Γ

ψ ∂ψ
Γ ψ δ

κ ∂ κ= =

⎛ ⎞⋅
⋅ = ⋅ − ⋅ ⋅ + ⋅ ⋅⎜ ⎟⎜ ⎟

⎝ ⎠
∑ ∑∫ (4)

Fig. 4  Linear boundary element in the local co-ordinate system

For linear boundary elements, the temperature
distribution T  and the normal flux density q along the
jth boundary element are approximated by:

2

ji ji
i 1

T N T
=

= ⋅∑ (11)

2

ji ji
i 1

Q N Q
=

= ⋅∑ (12)

where Nji is the shape function joined to the ith local
node of the jth boundary element, jiT  is the
temperature at the ith local node of the jth boundary
element, and Qji is the value of the normal component
of the flux density at the ith node of the jth boundary
element.

The shape functions are defined in the local co-
ordinate system (u,v) as it follows:

j1
2uN

2
−

=
⋅

(13)

j2
2uN

2
+

=
⋅

(14)
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For simplicity, the local nodes of each boundary
element are positioned so that the normal always has
the position as shown in Figure 4.

2.4 Infinite boundary element

Because the earth surface is unbounded, the part
of the boundary between the air and the earth has been
modelled using two infinite boundary elements
(Figure 5).

Fig. 5  Infinite boundary elements

Along the infinite boundary elements, the
temperature is equal to zero (T 0= ). Therefore, only
normal component of the flux density q along infinite
boundary element has to be approximated. The poles
of infinite boundary elements have to be located in the
center of cable trench external boundary. Because (in
this paper) the origin of global coordinate system (x,y)

is located in the center of cable trench external
boundary, the poles of the infinite boundary elements
are located in the origin of the global co-ordinate
system (Figure 5). The intensity of normal component
of the flux density decreases with the square of the
distance between field point and infinity boundary
element pole and the normal component of the flux
density has been approximated by the following
equation:

2 2

j1 j1 j1 j12 2
a aQ Q Q N Q
u y

= ⋅ = ⋅ = ⋅ (15)

where Nj1 is the shape function joined to the local node
of the jth (infinite) boundary element, and Qj1 is the
value of the normal component of the flux density at
the node of the jth boundary element. For the difference
of linear boundary element, which has two local nodes,
the infinite boundary element has only one global
node.

2.5 System of linear equations

The integration along the boundary curve pr k\ PΓ
is equal to the sum of the integrals along linear
boundary elements and infinite boundary elements,
then, according to Eqs. (4), (11), (12) and (15), the
temperature kT  at the point Pk belonging to the pth

subdomain is described by:

prj k prj k

NSD NE NLNJ NLNJ NSC
k s

k k pr k ji ji ji ji ks ps
p pr 1 j 1 i 1 i 1 s 1\P \P

W1C T a N d Q N d T
n

Γ Γ

∂ψψ Γ Γ ψ δ
κ ∂ κ= = = = =

⎧ ⎫⎡ ⎤⎛ ⎞ ⎛ ⎞
⎪ ⎪⎢ ⎥⎜ ⎟ ⎜ ⎟⋅ = ⋅ ⋅ ⋅ ⋅ − ⋅ ⋅ ⋅ + ⋅ ⋅⎨ ⎬⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎪ ⎪⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦⎩ ⎭

∑ ∑ ∑ ∑ ∑∫ ∫

(16)
where NE is the total number of elements (boundary elements + infinite boundary elements) in the whole domain Ω,
NLNJ is the total number of local nodes of jth element, and Γprj is a part of the boundary Γpr belonging to the jth
element.

The expression (16) can be written as:

( )
NSD NE NLNJ NSC

* * s
k k kji ji kji ji ks ps

pr 1 j 1 i 1 s 1

WC T G Q H T ψ δ
κ= = = =
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where:
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Γ
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∂
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In a case of infinite boundary element, Eq. (18) can be written as:

2
*
kj1 pr j1 k pr k2
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and *
kj1H  is not computed because T 0=  along the

infinite boundary element.
The coefficients *

kjiG  and *
kjiH  are computed by

analytical integration [16].
Using global nodes notation, the system of Eqs.

(17) can be written:

( )
NN NSC

s
k k km m km m ks ps

pm 1 s 1

W
C T G Q H T ψ δ

κ= =

⋅ = ⋅ − ⋅ + ⋅ ⋅∑ ∑
(21)

where NN is the total number of global nodes, mT  is
the temperature at the mth global node and Qm is the
normal component of the flux density at the mth global
node.

The unknown temperatures and normal densities at
the global nodes could be computed using the point
collocation method. It is useful to assume that the total
number of collocation points is equal to the total
number of unknowns. In other words, one collocation
point per subdomain is joined to each global node with
at least one unknown.

If at a single point there is only one global node
(single global node case), then the joined collocation
point is located at the observed node. However, if at a
single point there are two global nodes (double global
node case) or several global nodes (multiple global
node case), then the joined collocation points are
moved from the observed nodes along the associated
boundary elements by one-quarter of the boundary
element length. The system of linear equations
obtained by this algorithm is regular in all cases.

Collocation point method, applied to Eq. (21), gives
the next system of linear equations:

( )

( )

k k d
NN NSC

s
km m km m ks ps

pm 1 s 1

C T T

WG Q H T ,

k 1, 2, ..., NU

α β

ψ δ
κ= =

⋅ ⋅ + ⋅ =

= ⋅ − ⋅ + ⋅ ⋅

=

∑ ∑

(22)

where NU is the total number of unknowns, kT  is kth

global node temperature, dT  is dth global node
temperature, while the values of the αk and βk are
αk=1 and βk=0 if the collocation point is located in the
kth global node, and αk=0.75 and βk=0.25 if the
collocation point Pk is moved from the kth node.

The system of linear Eqs. (22) in matrix notation
can be written as:

[ ] { } [ ] { } { } [ ] { }sG Q H T T C T⋅ − ⋅ + = ⋅ (23)
The system of linear Eqs. (23) is regular. However,

in points with more than one global node, the
temperature continuity, which must be satisfied, can be

significantly interrupted. Therefore, due to numerical
stability, a new equations have been added to this
system. These additional equations equalize the
temperatures of the global nodes located in the same
point.

The extended system of linear algebraic equations
can be written in the following form:

[ ] { } { }A X B⋅ = (24)

where { }X  is the vector of unknowns.
By solving the system of linear Eqs. (24), the

unknown normal flux densities and temperatures at all
global nodes can be computed. In general case, this is
a situation when we wish to find the least squares
solution to an over-determined set of linear equations.
Since this set of equations is very close to singular, the
system of Eqs. (24) has been solved using the
algorithm based on singular value decomposition [17].

3. ANALYTICAL SOLUTION FOR
ILLUSTRATIVE EXAMPLE

For chosen illustrative example, presented in Figure
2, an analytical solution for temperature T  inside of
cable trench (subdomain Ω1) can be obtained using the
method of images. In the first step, the Dirichlet
boundary condition T 0=  on the earth surface is
satisfied using the method of images. The source and
both subdomains are reflected in relation to the earth
surfaces (Figure 6). In the second step, the original
source and its image in relation to the earth surface
(Figure 6) is reflected infinite number of times in
relation to modified subdomain Ω1 boundaries [18].

Fig. 6  Problem geometry modified by method of images

Finally, the next analytical expression for
temperature distribution inside original subdomain Ω1
(Figure 2) has been obtained:

h

W = W1

W  = -W2

Hy

Hx
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κ2
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( ) ( )
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where:

1 2

1 2
R κ κ

κ κ
−

=
+ (26)

is the geometric reflection factor,
x11=h   ;   x12=Hx− h;   x22=− Hx− h

x1j=− x2,j-1+Hx   ;   j = 3, 4, 5, ... (27)
x2j=− x1,j-1−Hx   ;   j = 3, 4, 5, ...

and:
y11=0   ;   y21=Hy   ;   y22=− Hy
y1k= y1,k-1+Hy   ;   k = 2, 3, 4, ... (28)

y2k=− y1k   ;   k = 2, 3, 4, ...

Distances Hx, Hy and h are defined in Figure 6.

4. NUMERICAL EXAMPLES

On the basis of the presented theory a software
package EarthCable has been developed for the
numerical analysis of buried power cables thermal
field. For the illustration, numerical examples with
known analytical solutions are presented. In all
examples the geometry is identical; the single-core
cable is placed in a 0.61x1.22 m trench (Figure 7).
Internal boundary is divided into 50 linear boundary
elements, and external boundary is divided into 30
linear boundary elements and two infinite boundary
elements. The distance between poles and nodes of
infinite boundary elements is: a=15 m; external radius
of single-core cable is: r=0.0255 m.

Fig. 7  Single-core cable in a trench

In all numerical examples, the temperature T0=90°C
at the cable surface is input datum, and output datum is
the heat input rate per unit length of the cable W.
Comparison of the heat input rates W computed by
EarthCable with the exact values is presented in Table 1
for 1 2κ κ≥  and in Table 2 for 2 1κ κ≥ .

According to Tables 1 and 2, the numerical
procedure based on 2D BEM is very accurate. For the
same input data, the values computed by numerical
model based on BEM without infinite boundary
elements [14] and by numerical model based on FEM
[10] are presented in Table 3. According to Table 1
and Table 3, the numerical model developed in this
paper is much more accurate than both other numerical
models.
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analytical integration along linear boundary elements
and infinite boundary elements. The software package
developed upon presented theory, gives highly accurate
results in a short execution time. Other advantages of
the developed numerical model are the simplicity of
use and low input data requirements. Presented simple
numerical examples have confirmed the correctness of
the presented theory and the high accuracy of the
developed software package.
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4.97    0.67    3.33 97.243   97.047 -0.202 
10    0.67    6.7 103.803  103.648 -0.149 
50    0.67    33.5 109.908  109.860 -0.044 
100    0.67    67.0 110.740  110.711 -0.026 

BEM  [14] FEM  [10] κ1 

[W/°Cm] 
κ2 

[W/°Cm] 

Exact 
W 

[W/m]  
W 

[W/m] 
Error 
[%] 

W 
[W/m] 

Error 
[%] 

 1.0  0.67 90.815 91.5 0.754 98.16 8.087 
 1.11  0.67 97.423 98.79 1.403 105.25 8.034 
 1.25  0.67 105.505 107.74 2.118 113.64 7.711 
 1.43  0.67 115.471 119.02 3.073 124.0 7.386 
 1.67  0.67 128.196 133.78 4.356 137.18 7.008 
 2.0  0.67 144.925 154.03 6.283 154.69 6.737 
 2.5  0.67 169.136 183.73 8.628 179.61 6.192 

 3.33  0.67 207.479 234.15 12.855 219.15 5.625 

Table 1 Comparison of the computed heat input rates for
κ1≥ κ2

Table 2 Comparison of the computed heat input rates for
κ2≥ κ1

Table 3 Comparison of heat input rates computed by BEM
[14] and FEM [10] with exact values
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2D BEM PRORA^UN TEMPERATURNOG POLJA ELEKTROENERGETSKIH KABELA

SA@ETAK

U ovom je radu opisan novi 2D BEM numeri~ki model za prora~un temperaturnog polja ukopanih
elektroenergetskih kabela. Ukupan broj kabela i ukupan broj homogenih podpodru~ja unutar kabelskog kanala
potpuno su proizvoljni. Novina u ovom radu je to što je dio otvorene vanjske granice (površina tla) modeliran
pomo}u novog tipa grani~nog elementa nazvanog beskona~ni grani~ni element. Osim toga, djelotvornost numeri~kog
postupka zasnovana je na uspješnoj primjeni analiti~ke integracije du` linearnih grani~nih elemenata te du`
beskona~nih grani~nih elemenata. Upotrebom tehnike dvostrukih i višestrukih globalnih ~vorova, dobiveno je fizikalno
ispravno rješenje za normalnu komponentu gusto}e toka i u to~kama u kojima postoji njezin diskontinuitet. Riješeni
su pokazni primjeri koji imaju poznato analiti~ko rješenje.

Klju~ne rije~i: 2D BEM prora~un, beskona~ni grani~ni element, elektroenergetski kabel, temperaturno polje,
dozvoljena strujna opteretivost kabela.
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