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SUMMARY
In this paper we discuss a theoretical formulation of a fully nonlinear shell model, capable of representing finite

rotations and finite strains. The latter imposes that one should account for through-the-thickness stretching, which
allows for direct use of 3D constitutive equations from classical continuum model. Three different possibilities for
implementing this kind of shell model within the framework of the finite element method are examined, the first one
leading to 7 nodal parameters and the remaining two to 6 nodal parameters. The 7-parameter shell model with no
simplification of kinematic terms is compared to the 7-parameter shell model which exploits usual simplifications of
the Green-Lagrange strains. Two different ways of implementing the incompatible mode method for reducing the
number of parameters to 6 are presented. One implementation uses an additive decomposition of the strains and the
other an additive decomposition of the deformation gradient. A couple of numerical examples are given to illustrate
performance of the shell elements developed herein.
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1. INTRODUCTION

The very recent research on the shell problem in
the computational mechanics community is closing the
gap between the classical shell model (which is
basically 2D) and the classical 3D solid model [1]. While
the latter was mastered long ago, the former - the
nonlinear analysis of shells - has mainly been restricted
to the shell models which are naturally placed within
the theoretical framework of the Cosserat surface [2].
Even in such a simplified setting the numerical
implementation issues have been finally settled fairly
recently (see Ref. [3] for a recent review).

This paper is the extended version of the work presented at
Special Workshop on Advanced Numerical Analysis of Shell-like
Structures, Zagreb, Croatia, 2007 [1].

With both types of numerical models available it
was natural to try to address an always present need to
produce a model which would fit in between the shell
(possibly retaining its computational efficiency) and the
3D solid.

A model of that kind can serve well in representing a
stress variation in through-the-thickness direction, and
eventual boundary layer effects. More importantly, it can
directly use the 3D version of constitutive relations and
thus eliminate eventual complexities stemming from
imposing the zero-through-the-thickness-stress
restriction on any constitutive model. It is desirable that
such a shell model (further referred to as 3D shell) be
capable of recovering the 2D shell behavior in the limit
case of thin shell, as well as be considerably better in
recovering true stress field for a thick shell than the usual
thick shell model of Reissner-Mindlin type.
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A few different approaches have been explored
recently. The first group of works (Refs. [4-6]) started
with the Reissner-Mindlin shell model (with three
displacements of the mid-surface and two rotation
parameters of the shell director typically used for
smooth shells) enriching it further by a desired number
of parameters to permit a reliable representation of
through-the-thickness stretching. Those parameters
are either independent kinematic variables, or strain
variables constructed in the framework of the enhanced
assumed strain (EAS) method, which are further
eliminated at the finite element level. Second group
(Refs. [7-9]) went along a similar path, but instead of
describing shell director deformation with two rotation
parameters they rather used three components of so-
called difference vector. So developed shell models
posses no rotation degrees of freedom. Final group to
be mentioned (see Refs. [10-12]) preferred to take a
solid element as the basis for their developments. They
reduced the shell like features of the so developed
elements to special treatment of shear deformation
along with the modifications for through-the-thickness
stretching.

For any of the 3D shell models mentioned above,
the use of the fully 3D constitutive equations should
preferably be accompanied by a linear variation of the
through-the-thickness deformation component. This
imposes 2 additional kinematic parameters for models
with rotations and 1 for models with displacements
only. One arrives at a 7-parameter shell theory. If one
intends to decrease the computational efficiency and,
more importantly, simplify the issues of the
corresponding boundary conditions, the method of
incompatible modes (see Refs. [13-15]) ought to be
employed in order to reduce the number of parameters
to 6.

We focus in this work on two questions. First, we
study the difference between a 7-parameter theory
where the exact expressions are used for the Green-
Lagrange strain measures versus the shell theory where
the usual simplifications are carried out by neglecting
certain terms. The former of these two models can be
developed without difficulty mostly for our use of
symbolic manipulation. The second study is oriented
towards two possible implementations of the method
of incompatible modes: one with an additive
decomposition of strains (Ref. [14]) versus the other
with an additive decomposition of the deformation
gradient which leads to a multiplicative decomposition
of strains (Ref. [15]).

The outline of the paper is as follows. In Section 2
we lay the governing equations of the 7-parameter shell
model. Two different variants of the incompatible
mode methods are presented in Section 3. In Section 4
we provide some details of the numerical
implementation. Several numerical examples are
presented in Section 5 and the concluding remarks are
given in Section 6.

2. SHELL THEORY WITH 7 PARAMETERS

In this section we first elaborate upon a shell
formulation which employs the Reissner-Mindlin
hypothesis that a straight fiber remains straight, but
with enhanced, higher-order variation of the through-
the-thickness displacement components. We then move
on to develop the corresponding form of the Green-
Lagrange strain measures. To complete the theory we
deal with the simplest set of hyperelastic constitutive
equations: the St.Venant-Kirchhoff and the neo-
Hookean materials. Finally, the equilibrium equations
are presented in their weak form along with their
consistent linearization.

Contrary to the classical Reissner-Mindlin
kinematics (incapable of accounting for through-
thethickness deformation), we set to develop an
enriched kinematic field in order to extend the potential
application domain of the developed shell model. To
that end, the shell position vector from the initial
configuration:

( ) ( ) ( )1 2 1 2 1 20
0 0

h, , , ,
2

ξ ξ ζ ϕ ξ ξ ζ ξ ξ= +x g (1)

with:

( ) [ ]1 2 21, , A , 1,1ξ ξ ς= ⊂ ⊂ ∈ −g (2)

(where ξ1, ξ2 and ζ are natural or convected
coordinates, ϕ0 is the position vector of the shell middle
surface, h0 is the initial constant shell thickness, A is
the domain of the shell middle surface parametrization,
and g is the initial unit normal or shell director) is
transformed into its counterpart at the deformed
configuration as:

( ) ( ) ( ) ( )
( ) ( ) ( )

1 2
1 2 1 2 1 2

21 2
1 2 1 2

h ,
, , , ,

2

h ,
q , ,

2

ξ ξ
ξ ξ ς ϕ ξ ξ ζ ξ ξ

ξ ξ
ζ ξ ξ ξ ξ

= + +

⎡ ⎤
⎢ ⎥+
⎢ ⎥
⎢ ⎥⎣ ⎦

x a

a%
(3)

with:

1=a (4)
and:

( ) ( ) ( )1 2 1 2 1 2
0, , ,ϕ ξ ξ ϕ ξ ξ ξ ξ= + u (5)

In Eqs. (3) and (5) u is the displacement vector
providing a new position of the middle surface, h is
current shell thickness, a is current position of the shell
director and q%  is the hierarchical term introducing the
displacement quadratic variation in the through-the-
thickness direction. Considering that we allow for
thickness change in the direction of ζ coordinate (note
that ζ coordinate is not perpendicular to the middle
surface at the deformed configuration) with:
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( ) ( )1 2
1 2

0

h ,
,

h

ξ ξ
λ ξ ξ = (6)

we may write Eq. (3) as:

( ) ( ) ( ) ( )

( ) ( )

1 2 1 2 1 2 1 20

2
2 1 2 1 20

h
, , , , ,

2
h q , ,
2

ξ ξ ζ ϕ ξ ξ ζ λ ξ ξ ξ ξ

ζ ξ ξ ξ ξ

= + +

+

x a

a
(7)

where:
q qλ= % (8)

We note that the structure of the term for quadratic
variation of displacements in through-the-thickness
direction chosen in Eq. (7) is just one of several
possibilities. To simplify the notation we further
rewrite Eq. (7) as (this equation can be regarded as a

two-term approximation of equation  n
n

n 1
ϕ ζ

∞

=

= +∑x d

given by Ref. [2] (page 466) to derive a shell theory
from the 3D solid; see also Ref. [16]):

( ) ( ) ( ) ( )1 2 1 2 1 2 2 1 2, , , , ,ξ ξ ς ϕ ξ ξ ς ξ ξ ς ξ ξ= + +x d f

(9)
where:

2
0 0h h

, q
2 4
λ= =d a f a (10)

The position of the shell director a is defined by
two rotational parameters, which are in this work two
components of the total material rotation vector ϑ:

a=a(ϑ1,ϑ2) (11)
(see Ref. [17] or Ref. [18] for details). The
configuration space consistent with the choice of
kinematics indicated in Eq. (3) has 7 parameters:

( ) 3 2

A aA A qA

,a, ,q A S
C

, , ,q qϕ λ

Φ ϕ λ

ϕ ϕ λ λ

+

∂ ∂ ∂ ∂

⎧ ⎫= → × × ×⎪ ⎪= ⎨ ⎬
= = = =⎪ ⎪⎩ ⎭a a

(12)

where ∂ϕA, ... ∂qA are parts of the shell boundary
where the corresponding variable value is prescribed.
In Eq. (12), it is indicated that the unit vector a belongs
to a unit sphere manifold, which imposes a special
treatment of finite rotations (see Ref. [19] or Ref. [17]).

Departing from the classical exposition on the
subject (Ref. [2]), which reduces the shell theory to a
2D setting, we keep herein the fully 3D picture.
Consequently, the choice of the coordinates in the shell
deformed configuration leads to the following vector
basis:

2
,a , ,

3 2

α α αα ϕ ζ ζ
ξ

ζ
ζ

∂
= = + +
∂
∂

= = +
∂

xa d f

xa d f
(13)

where ( ) ( )
,

o
o α αξ

∂
=
∂

, α = 1, 2 and:

( ) ( )
2

0 0
, , , , , ,

h h, q q
2 4α α α α α αλ λ= + = +d a a f a a (14)

The Green-Lagrange strains may be written as:

( ) ( )T i j
ij

1 1 E
2 2

= − = − = ⊗E F F 1 C 1 g g (15)

where F is deformation gradient, 1 is unit tensor, C is
right Cauchy-Green stretch tensor and gi are
contravariant base vectors of the initial configuration,
defined as gi⋅gj=δi j, where δi j is Kronecker delta
symbol. Base vectors gi follow from Eq. (1) as:

0 0
0,a ,

0 0
3

h
2

h
2

α αα ϕ ζ
ξ

ζ

∂
= = +
∂
∂

= =
∂

xg g

xg g
(16)

Note that g3=2g/h0. Strains in that basis are defined
as (F = ai ⊗ gi and 1 = gi ⋅ gj gi ⊗ gj):

( )ij i j i j

2 3 4
ij ij ij ij ij

1E
2
H K L M Nζ ζ ζ ζ

= ⋅ − ⋅ =

= + + + +

a a g g

(17)

with their explicit forms (note that the through-the-

thickness coordinate in shell theories is usually defined

as 0h
2

ξ ζ=  having ( ) ( )
3

o
o

ξ
∂

=
∂

. Since we work here

with ζ coordinate and ( ) ( )
3

o
o

ζ
∂

=
∂

, we obtain for

strains an additional term of 0h
2

 for each subscript 3)

can be obtained by using Eqs. (13) and (16):

( ), , 0 , 0,

0
3 , 0,

0

0
33

1H
2

h1H
2 2

h1H
2 4

αβ α β α β

α α α

ϕ ϕ ϕ ϕ

ϕ ϕ

= ⋅ − ⋅

⎛ ⎞
⎜ ⎟= ⋅ − ⋅
⎜ ⎟
⎝ ⎠
⎛ ⎞= ⋅ −⎜ ⎟
⎝ ⎠

d g

d d

1423
(18)

( )

0 0
, , , , 0 , , 0 , ,

2
0

3 , , 0 ,

0

33

h h1K
2 2 2

h1K 2
2 4

1K 4
2

αβ α β β α α β β α

α α α α

ϕ ϕ ϕ ϕ

ϕ

⎛ ⎞= ⋅ − ⋅ − ⋅ − ⋅⎜ ⎟
⎝ ⎠
⎛ ⎞
⎜ ⎟= ⋅ + ⋅ − ⋅
⎜ ⎟
⎝ ⎠

= ⋅

d d g g

d d f g g

f d

1423
(19)
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( )

( )

0
, , , , , , , ,

3 , ,

33

h1L
2 4
1L 2 d
2
1L 4
2

αβ α β α β β α α β

α α α

ϕ ϕ⎛ ⎞= ⋅ + ⋅ + ⋅ − ⋅⎜ ⎟
⎝ ⎠

= ⋅ + ⋅

= ⋅

d d f f g g

d f f

f f

( )

( )

, , , ,

3 ,

33

1M
2
1M 2
2

M 0

αβ α β β α

α α

= ⋅ + ⋅

= ⋅

=

d f d f

f f (21)

( ), ,

3

33

1N
2

N 0
N 0

αβ α β

α

= ⋅

=

=

f f

(22)

From the above expressions it can be seen that the
in-plane shell strains are of fourth order with respect
to ζ coordinate, while the transverse shear strains and
the transverse normal strain vary cubically and
quadratically, respectively.

Usual simplification carried out in the shell theory
developments (see Refs. [9, 20, 21]) is to truncate
expression (17) after the linear term, so that:

ij ij ijE H Kζ→ + (23)

In this work we will develop a model with exact
expressions for strains and a simplified model with
constant and linear variation of strains through the
thickness.

Having defined the kinematics for the chosen 7-
parameter shell model, we proceed with the
constitutive equations. We will restrict ourself to a
simplest set of hyperelastic materials: the St.Venant-
Kirchhoff and the neo-Hookean. The stored energy
density function per unit initial volume of the
St.Venant-Kirchhoff material is defined as:

( ) ( )2 2W tr tr
2
λ µ= +E E E (24)

where 
( ) ( )

E
1 1 2

νλ
ν ν

=
+ −

 and 
( )

E
2 1

µ
ν

=
+

 are

Lame coefficients, tr(o) is trace of tensor (o) , and E
is the Green-Lagrange strain tensor deduced above.
The stored energy density function for the neo-
Hookean material reads as:

( ) ( )2 tr 3W J 1 ln J
2 2
λ µ −⎛ ⎞= − + −⎜ ⎟

⎝ ⎠
CE (25)

where J det C= . No shear correction factors are
used in the constitutive models. Derivation of Eqs. (24)

and (25) with respect to the strain tensor leads to
expressions for the 2nd Piola-Kirchhoff stress tensor.
So, we have:

ij
i j

W tr 2 Sλ µ∂
= = + = ⊗
∂

S E1 E g g
E

(26)

for the St.Venant-Kirchhoff material and:

( ) ( )1 1 ij
i j

W2 J 1 J Sλ µ− −∂
= = − + − = ⊗

∂
S C 1 C g g

C
(27)

for the neo-Hookean material. Derivation of stresses
with respect to strains gives the components of the
constitutive tensor:

( )2
ijkl i j k l

2
W

C C
∂∂

= = = ⊗ ⊗ ⊗
∂ ∂

ES g g g g
E E

(28)

We can thus write the total potential energy for the
present shell model in the same way as for the 3D solid:

( ) ( ) ( )
0

ext
A h

,a, ,q W ,a, ,q dVΠ ϕ λ ϕ λ Π ϕ= +⎡ ⎤⎣ ⎦∫ ∫ E

(29)

where A defines the shell middle surface and Πext is
the potential of the conservative external forces acting
on the middle surfaces (note that the potential of the
conservative external forces can be extended to the
forces acting on the shell top and bottom surfaces, i.e.
Πext = Πext (ϕ + ζd + ζ2f ), where ζ = ±l) of the shell,
which may be written as:

( )ext 0 0
A A A

h dA dA dsΠ ϕ ρ ϕ ϕ ϕ
∂

= − ⋅ − ⋅ − ⋅∫ ∫ ∫b p t

(30)

In Eq. (30) b , p and t  are applied body forces,
pressure forces and forces acting on the edges of the
shell middle-surface, respectively, and ρ0 is the initial
3D mass density. Variation of Eq. (29) with respect to
the independent kinematic variables leads to the weak
form of equilibrium equations:

( ) ( )
0

ext
A h

W
V DΠ ϕ ϕ

∂
∂ ∂ = ⋅ ∂

∂∫ ∫
E

E
E

(31)

where the variation of strains, δΕΕΕΕΕ = DΕΕΕΕΕ(ΦΦΦΦΦ)⋅δΦΦΦΦΦ can be
obtained by varying Eqs. (18) to (22). Linearization of
Eq. (31) gives the tangent operator:

( ) ( )
0A h

C dV∆ δ ∆δ+⎡ ⎤⎣ ⎦∫ ∫ E E S E (32)

where ∆E is the linearization of strains ∆ΕΕΕΕΕ=DΕΕΕΕΕ(ΦΦΦΦΦ)⋅δΦΦΦΦΦ,
and ∆δE is the linearization of the variation of strains
∆δΕΕΕΕΕ = D[δΕΕΕΕΕ(ΦΦΦΦΦ)]⋅∆ΦΦΦΦΦ.

(20)
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3. SHELL THEORY WITH 6 PARAMETERS
AND INCOMPATIBLE MODES

The 7-parameter shell theory developed in the
previous section is very much geared towards the
applications of a shell-like structures, and it might be
difficult to use it as a part of the model of a complex
system. Therefore, we develop in this section an
alternative implementation of the shell theory with
through-the-thickness stretching where the number of
parameters is reduced to 6, which might be easier to
combine with solids. In order to accommodate the
linear variation of the through-the-thickness stretch we
resort to the method of incompatible modes. We obtain
a shell finite element with 6 nodal parameters, which
possesses an additional advantage of fitting easier into
the standard finite element software architecture.

Two possible implementations of the incompatible
mode method are considered: one with an additive
decomposition of strains and the other with an additive
decomposition of the deformation gradient, which
leads to a multiplicative decomposition of strains. The
former is simpler, but only acceptable for small strains,
whereas the latter, although more complex to handle,
is also applicable for large strains.

3.1 Incompatible modes based on an additive
decomposition of strains

If one wants to recover a 6-parameter (note that
the same notation is used in sections 2 and 3, although
some quantities of the 6-parameter shell theory (like x,
ai, some strains, etc.) are of different form than those
of the 7-parameter shell theory) shell theory, the
through-the-thickness displacement variation ought not
be more than linear. This results in the following
deformed configuration position vector:

( ) ( ) ( ) ( )
( ) ( )

1 2 1 2 1 2 1 20

1 2 1 2

h, , , , ,
2

, ,

ξ ξ ζ ϕ ξ ξ ζ λ ξ ξ ξ ξ

ϕ ξ ξ ς ξ ξ

= +

= +

x a

d
(33)

with d already defined in Eq. (10). The corresponding
base vectors are then:

,a ,a

3

α αϕ ζ
ξ

ζ

∂
= = +
∂
∂

= =
∂

xa d

xa d
(34)

The initial configuration position vector and its
derivatives remain the same as indicated in Eqs. (1)
and (16), respectively.

The configuration space of the shell model
consistent with the choice of kinematics indicated in
Eq. (33) has 6 parameters: 3 displacements of the

middle surface, 2 rotation parameters defining the
position of the shell director a and 1 through-the-
thickness stretching parameter λ. It can be written as:

( ) 3 2

A aA A

,a, , A S
C

, ,ϕ λ

Φ ϕ λ

ϕ ϕ λ λ

+

∂ ∂ ∂

⎧ ⎫= → × ×⎪ ⎪= ⎨ ⎬
= = =⎪ ⎪⎩ ⎭a a

(35)

The Green-Lagrange strains for the 6-parameter
model in the gi base are then:

( ) 2
ij i j i j ij ij ij

1E H K L
2

ζ ζ= ⋅ − ⋅ = + +a a g g (36)

where:

( )

( )

, , 0 , 0,

3 ,

2
0

33

1H
2
1H
2

h1H
2 4

αβ α β α β

α α

ϕ ϕ ϕ ϕ

ϕ

= ⋅ − ⋅

= ⋅

⎛ ⎞
= ⋅ −⎜ ⎟⎜ ⎟

⎝ ⎠

d

d d

(37)

( )

0 0
, , , , 0 , , 0 , ,

3 ,

33

h h1K
2 2 2
1K
2

K 0

αβ α β β α α β β α

α α

ϕ ϕ ϕ ϕ⎛ ⎞= ⋅ + ⋅ − ⋅ − ⋅⎜ ⎟⎝ ⎠

= ⋅

=

d d g g

d d (38)

2
0

, , , ,

3

33

h1L
2 4

L 0
L 0

αβ α β α β

α

⎛ ⎞
= ⋅ − ⋅⎜ ⎟⎜ ⎟

⎝ ⎠
=

=

d d g g

(39)

Through-the-thickness variation of the in-plane
strains, the transverse shear strains and the transverse
normal strain is quadratic, linear and constant,
respectively. A problem arises from the zero value of
K33 in Eq. (38), which implies a constant value of E33
strain. Namely, even for the simplest stress state of
pure bending (equivalent to the patch test condition,
see Ref. [22]) with the linear variation of in-plane strain
components in through-the-thickness direction, the
plane stress state can never be reproduced for any non-
zero value of Poisson’s ratio, since:

{ {
33 33 3333

33
cons tant inlinear in

S C E C Eαβ
αβ

ζζ

= + (40)

This kind of problem is often referred to as the
Poisson’s ratio stiffening (see Refs. [7, 23]).

If one would like to employ a 3D constitutive model
for shells and still avoid the Poisson’s ratio stiffening,
it is indispensable to use a linear variation of the E33
strain component, which can be introduced by the
incompatible mode method:
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ij ij ij ij

33

0 i, j 1 or 2
E E E , E 0 i or j 3

A i, j 3ζ

=⎧
⎪→ + = =⎨
⎪ =⎩

% % (41)

This modification can then be introduced into the
energy functional governing the shell problem
according to:

( ) ( )

( )
0

ij
ij

ijkl ij
ij ij kl kl ij

A h

ext

, , ,E ,S

1 E E C E E S E dV
2

Π ϕ α λ

Π ϕ

Φ

%
123

% % %

⎛ ⎞
⎜ ⎟ =
⎜ ⎟
⎝ ⎠

⎧ ⎫= + + − −⎨ ⎬
⎩ ⎭

−

∫ ∫

The second term in the integral in Eq. (42)
represents the Lagrange multiplier modification forcing
the enhancement 33E%  to disappear in the strong form
of the problem. The same does not happen in the weak
form, which can be written as:

( )
( ) ( )

0

ij
ij

ijkl
ij kl kl ext

A h

D ,E ,S

E C E E dV D 0

Π δ

δ Π ϕ δϕ

Φ Φ%

%

⋅ =

= + − =∫ ∫

( )
( )

0

ij
ij ij

ij ijkl
ij kl kl

A h

D ,E ,S E

E S C E E dV 0

Π δ

δ

Φ % %

% %

⋅ =

⎡ ⎤= − + + =⎣ ⎦∫ ∫ (44)

( )
0

ij ij
ij ij ij

A h

D ,E ,S S S E dV 0Π δ δΦ % %⋅ = =∫ ∫ (45)

Expressions (43) to (45) can be simplified by
assuming orthogonality of the chosen strain
enhancement and the stress field, making the first term
in each of the last two equations to disappear. Eq. (45)
implies that one should have:

( )
0 0

33 33 33
33

A h A h

0 S E dV S A dVζ= =∫ ∫ ∫ ∫% (46)

if S33 = f unct (ξ1,ξ2).
One has to ensure, however, that the constant

through-the-thickness stress field is contained in the
chosen stress variation thus ensuring the patch test
condition (Ref. [22]) in the following form:

1
1 2

33
1 dV

E jd d d 0ζ ξ ξ
−

=∫ ∫ % 144243
(47)

where  is a bi-unit square and j is Jacobian of the

transformation from the initial shell finite element

configuration to a bi-unit cube ( i jj det ⎡ ⎤= ⋅⎣ ⎦g g ).

Interpolation of A33 over the finite element may be
chosen as:

( )
( )

1 2
33

1 2 1 2 T0 0
1 2 3 4

A ,

j j
j j

ξ ξ

α α ξ α ξ α ξ ξ n α

=

= + + + = (48)

or otherwise with the bi-linear functions as:

( ) ( ) ( )

( ) ( )

1 2 1 2 1 20
33 1 1 2 2

1 2 1 2 T0
3 3 4 4

j ˆ ˆA , N , N ,
j

jˆ ˆ ˆ ˆN , N ,
j

ξ ξ α ξ ξ α ξ ξ

α ξ ξ α ξ ξ n α

⎡= + +
⎣

⎤+ + =
⎦

(49)

In Eqs. (48) and (49) j0 is Jacobian at the center of
the finite element (at ξ1=ξ2=ζ=0), vector:

{ }T
1 2 3 4, , ,α α α αα = (50)

is vector of four local element strain parameters (note
that in the following the procedures will be developed
for ααααα parameters although they are also valid for %α
parameters) associated with interpolation of 33E% , and
n is vector of interpolation functions for ααααα. Na (with
a=1,2,3,4) are standard bi-linear interpolation functions
for 4-node finite element (which is also a particular
choice for the implementation of the present shell
theory; see section 4):

( ) ( )
[ ] [ ]

1 1 2 2
a a a

1 2
a a

1N 1 1 ,
4
1,1,1 1 , 1, 1,1 1

ξ ξ ξ ξ

ξ ξ

= + +

∈ − − ∈ − − −
(51)

Equation (46) can be now exactly verified for
constant S33 stress with respect to ζ coordinate, while
from Eq. (47) it follows:

1
1 2

0
1

0 0

j d d d 0ξ ξ ζ ζ
−

=∫ ∫n

1442443123

(52)

The set of remaining equations in (45) is highly
nonlinear and ought to be handled by an iterative
procedure. If the Newton method is used for such a
purpose, one employs constant linearization of Eq.
(45). The latter can easily be carried out by symbolic
manipulation (see Ref. [24]). Implementation of the
theory presented above in this section can be done by
replacing the energy functional governing the shell
problem (42) with four functionals, which have the
following forms when defined over the finite element
domain:

( ) ( )
1

ijkl 1 2
11 ij kl ext

1

1 E C E jd d d
2

Π ζ ξ ξ Π ϕΦ
−

= −∫ ∫ (53)

( )
1

ijkl 1 2
12 ij kl

1

1, E C E jd d d
2

Π α ζ ξ ξΦ %

−

= ∫ ∫ (54)

(42)

(43)
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( )
1

ijkl 1 2
21 ij kl

1

1, E C E jd d d
2

Π α ζ ξ ξΦ %

−

= ∫ ∫ (55)

( )
1

ijkl 1 2
22 ij kl

1

1 E C E jd d d
2

Π α ζ ξ ξ
−

= ∫ ∫ % % (56)

Variation and linearization of Eqs. (53) to (55)
carried out by symbolic manipulation with respect to
the unknown quantities Φ Φ Φ Φ Φ = (ϕ, a, λ) and α provide
the following set of linear equations:

T Tδ δ
δα ∆α
Φ Φ rfK F

h0F H

%% %
%% %

⎛ ⎞⎡ ⎤ ⎧ ⎫⎧ ⎫ ⎧ ⎫ ⎧ ⎫⎪ ⎪= −⎜ ⎟⎢ ⎥⎨ ⎬ ⎨ ⎬ ⎨ ⎬ ⎨ ⎬⎜ ⎟⎪ ⎪⎢ ⎥⎩ ⎭ ⎩ ⎭ ⎩ ⎭⎩ ⎭⎣ ⎦⎝ ⎠
(57)

where δ(o) are admissible variations, ∆(o) are linearized
quantities, while matrices and vectors in Eq. (57) follow
from the variation and linearization of Eqs. (53) to
(56).The subsequent solution procedure follows along
with the lines traced by Ref. [14].

3.2 Incompatible modes based on a
multiplicative decomposition of strains

An alternative manner to introduce the
incompatible modes is at the level of an additive
decomposition of the deformation gradient, which
would result in the corresponding multiplicative
decomposition of strains (see Ref. [15]). In the present
case the incompatible modes choice is dictated by the
goal to achieve a linear variation in the through-the-
thickness direction.

We replace the base vector a3 of the 6-parameter
shell model, defined in previous section in Eq. (34),
by a base vector 3a  of the following form:

( ) ( )
( )

( )
1 2

3

1 2 1 2 1 2
3

,

, , , , ,

ξ ξ

ξ ξ ζ ξ ξ ξ ξ ζ= +

a

a d b%
14243

(58)

where the vector b%  varies linearly in through-the-
thickness direction such that:

( ) ( )1 2 1 2, , ,ξ ξ ζ ζ ξ ξ=b b% (59)

Note that b in Eq. (59) is still undefined. The
enhancement (58) allows us to write the deformation
gradient as:

( )

3
3

1
1

0

i 3
i

α
α

ξ ξ

−
−

= ⊗ + ⊗ =

⎛ ⎞⎡ ⎤ ⎡ ⎤∂ ∂
= + = + =⎜ ⎟⎢ ⎥ ⎢ ⎥∂ ∂⎣ ⎦ ⎣ ⎦⎝ ⎠

= + = ⊗ + ⊗

F a g a g

x XH J H J

F F a g b g

% %

%% (60)

In Eq. (60) the natural coordinates are regrouped in

a vector { }T1 2, ,ξ ξ ξξ = , F is the deformation

gradient of the 6-parameter theory described in the
previous section and F  is an enhanced part of the
deformation gradient due to an enhancement of the
base vector. To simplify the notation we collected in
Eq. (60) the base vectors of deformed and initial
configurations into the following matrices (note that
the usual simplifications carried out in the shell theory
developments include also setting ζ=0 when evaluating
J0 (i.e. neglecting variation of metrics through the shell
thickness in the initial configuration), which is not done
in the present work):

[ ]
[ ]

1 2 3

T 1 2 3
0 1 2 3 0

, , , 0,0,

, , , , ,−

⎡ ⎤= = ⎣ ⎦
⎡ ⎤= = ⎣ ⎦

J a a a H b

J g g g J g g g

%%

(61)

Note that ai for the 6-parameter theory are defined
in Eq. (34), while gi are given in Eq. (16). The right
Cauchy-Green stretch tensor:

( ) ( )TT T 1
0 0
− −= = + +C F F J J H J H J% % (62)

leads to the Green-Lagrange strains in gi base
( ) i j

ij
1 E
2

= − = ⊗E C 1 g g  according to:

( )

( )

( ) ( )

( ) ( )

3

0

33 3 3

3 3

1E
2

1 1 1E
2 2 2

1E
2
1 1 2
2 2

αβ α β α β

α α α β α α

= ⋅ − ⋅

⎡ ⎤
⎢ ⎥= ⋅ + − ⋅ = ⋅ + ⋅
⎢ ⎥
⎣ ⎦

⎡ ⎤= + ⋅ + − ⋅ =⎣ ⎦

= ⋅ − ⋅ + ⋅ + ⋅

a a g g

a d b g g a d a b

d b d b g g

d d g g d b b b

% %
1423

% %

% % %

We can conclude from Eq. (63) that:
2

ij ij ij ijE H K Lζ ζ= + + (64)

where Hij, Kαβ  and Lαβ  strains are the same as those
already given in Eqs. (37), (38) and (39), respectively,
while other strains of the 6-parameter model from
Section 3.1 are modified to be:

( )

( )

3 , ,

33

1K
2
1K 2
2

α α α= ⋅ + ⋅

= ⋅

d d b

d b

ϕ
(65)

( )

( )

3 ,

33

1L
2
1L
2

α α= ⋅

= ⋅

d b

b b
(66)

Through-the-thickness variation of all strains is
quadratic.

(63)
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Note that one cannot use any more an additive split
of the total strain, as in the previously described
implementation. However, the admissible variations of
the Green-Lagrange strains, Eq. (64), can still be
written in terms of an additive decomposition as:

ij ijE Eδ δ+ % (67)
where:

( )ij i j i j
1E
2

δ δ δ= ⋅ + ⋅a a a a (68)

and:

( )ij

0 i, j 1 or 2
1E i or j 3
2

i, j 3

α αδ δ δ

δ δ δ

=⎧
⎪⎪= ⋅ + ⋅ =⎨
⎪

⋅ + ⋅ + ⋅ =⎪⎩

a b a b

d b b d b b

% %%

% % % %

(69)

The corresponding variational formulation can be
obtained by generalizing the incompatible mode
method of Ibrahimbegovi} and Frey, Ref. [3], from
membranes to shells. To that end, two equations
governing equilibrium can be written as:

{

( )
0

j j
i i

ij
ij e t

A h

D ,a, ,H ,P

E S dV D 0χ

Π ϕ λ δ

δ Π ϕ δϕ

Φ

Φ%
⎛ ⎞
⎜ ⎟ ⋅ =
⎜ ⎟
⎝ ⎠

= − ⋅ =∫ ∫
(70)

for the corresponding variation of the compatible
displacement field and:

( )
0

j j j ij
iji i i

A h

D ,H ,P H E S dV 0Π δ δΦ % % %⋅ = =∫ ∫ (71)

for the incompatible mode variations. In Eqs. (70) and
(71) we compute the second Piola-Kirchhoff stress
from the constitutive equations for the first Piola-

Kirchhoff stress, j
i j

i

WP
F
∂

=
∂

, along with the geometric

transformation connecting the two kinds of Piola-
Kirchhoff stresses, S = F−1P. The last two equations
have to be accompanied by an additional expression
which guaranties the convergence of the incompatible
mode method in the sense of the patch test, which can
be written as:

0

j
i

A h

H dV 0=∫ ∫ % (72)

In the finite element implementation we choose b,
see Eq. (59), to be:

33=b A d (73)
where d is the extensible shell director already
expressed in Eq. (10). From Eqs. (58) and (59) follows
that the enhanced base vector at the deformed
configuration is of the form:

( )3 331 ζ= +a A d (74)

An interpolation of A33 over the finite element may
be chosen again either by Eq. (48) or by standard bi-
linear interpolation functions, Eq. (49). With this choice
of interpolation, the patch test is naturally satisfied,
which can be proved in the same manner as already
shown in Eqs. (47) and (52).

4. INTERPOLATION AND FINITE
ELEMENT IMPLEMENTATION

Finite element approximation of the shell models
developed in the above sections is based on finite
elements with four nodes on the middle surface.
Convective coordinates ξ1 and ξ2 from previous
sections are now replaced with isoparametric
coordinates of a shell finite element. According to the
isoparametric concept we use standard bi-linear
interpolation functions to define middle surface
geometry within one element as:

( )( ) ( )
en enn n

1 2 1 2
0 a 0 a aa

a 1 a 1
N , , N ,ϕ ξ ξ ϕ ϕ ξ ξ ϕ

= =

= =∑ ∑
(75)

where the number of element nodes nen=4, Na : →
are the corresponding shape functions already given
in Eq. (51), whereas (o)a are the corresponding nodal
values. Through-the-thickness kinematic variables are
interpolated in the same manner:

enn

a a
a 1

N , 1λ λ λ λ
=

= = −∑% % % (76)

enn

a a
a 1

q N q
=

=∑ (77)

It is indicated in Eq. (76) that rather than the
thickness-change variable λ we interpolate λ%  in order
to have zero values of all unknown kinematic variables
at the initial configuration. Current thickness is then
expressed as:

( )0h h 1 , 1λ λ= − ≤% % (78)

Approximation of the shell director requires special
attention in order to obtain good numerical performance
of the 6- and the 7-parameter models for very thin
shells. Very often parasitic through-the-thickness
strains are induced through a simple interpolation of
the shell director, especially in formulations where
rotations are avoided by introducing the so-called
difference vector (Refs. [4, 7]). In some works the
effect of artificial thickness strains is avoided by
assumed strain approximation of E33 (Ref. [25]). To
avoid this approximation in the present work, the shell
director is normalized over an element in order to
always remain exactly of a unit length at the integration
points:
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enn

a a
a 1

ˆ ˆ, N
ˆ

=

= =∑aa a a
a

(79)

enn

a a
a 1

ˆ ˆ, N
ˆ

=

= =∑gg g g
g

(80)

The nodal shell director in a deformed configuration

is given as a function of the total nodal material rotation

vector { }T1 2
a a a,ϑ ϑ ϑ= with (see Ref. [21]):

{ } { }TT 2 1a
a 0a a a a

a

sin
cos 0,0,1 ,0

ϑ
Λ ϑ ϑ ϑ

ϑ
⎛ ⎞

= + −⎜ ⎟
⎝ ⎠

a

                                                                        (81)
where a aϑ ϑ=  is the Euclidean norm of the nodal
rotation vector and [ ]0a 1a 2a a, ,Λ = e e g  is the initial
nodal rotation matrix providing orientation for the
nodal rotation parameters ϑa1 and ϑa2. Vectors e1a,
e2a and ga define Cartesian basis at node a.

The virtual and the incremental quantities are
interpolated as:

en en enn n n

a a a a a a
a 1 a 1 a 1

N , N , q N qδϕ ϕ δλ λ δ
= = =

= = =∑ ∑ ∑% % (82)

( )
enn

a a
a 1

1 ˆ ˆ, N
ˆ

δ δ δ δ
=

= − ⊗ =∑a Ι a a a a a
a

(83)

Derivatives of the interpolated quantities with
respect to ξα coordinates can be obtained trivially
except for a,α and δa,α. Linearized quantities ∆δa and
∆δa,α have even more complicated forms and can be
mainly obtained by using symbolic manipulations.

In order to eliminate the shear locking effect, the
transverse shear strains are interpolated over a parent
element by using the assumed natural strain (ANS)
concept of Bathe and Dvorkin in Ref. [26] according to:

( ) ( )
( ) ( )

2 B 2 D
13 13 13

1 A 1 C
23 23 23

1E 1 E 1 E
2
1E 1 E 1 E
2

ξ ξ

ξ ξ

⎡ ⎤= − + +
⎣ ⎦

⎡ ⎤= − + +
⎣ ⎦

(84)

Strains ( )o
i3E  are evaluated at the mid-side point (o)

in accordance with the expressions derived in the
previous sections. Linear and higher order terms of

( )o
i3E  are automatically neglected by choosing the

shear interpolation points A, B, C and D on the middle
surface of the shell finite element corresponding to
ζ=0. Positions of those points are

( ) ( )L
0 0 0M N

1
2

ϕ ϕ ϕ⎡ ⎤= +⎣ ⎦ , where (L,M,N) ∈ {(A,1,2),

(B,2,3), (C,3,4), (D,l,4)}. Finite element approximation
of the transverse shear strains across the thickness of

the shell element is therefore assumed to be constant.
Numerical integration is performed at 2×2×2 Gauss

integration points. At each integration point a local
Cartesian basis ei is introduced in such a way that the
third base vector is identical to the initial shell director
and the other two are perpendicular to it:

3 1 2 1 2 3, ,= ⊥ × =e g e e e e e (85)
Having defined the current and the initial position

vectors over a finite element domain, we may obtain
the deformation gradient at an integration point as:

1
10

0
0 ξ ξ

−
−∂⎡ ⎤ ⎡ ⎤∂ ∂

= = =⎢ ⎥ ⎢ ⎥∂ ∂ ∂⎣ ⎦ ⎣ ⎦

xx xF JJ
x

(86)

where J and J0 are defined in Eq. (61). The right
Cauchy-Green stretch tensor can be computed from the
deformation gradients (we note again that the
deformation gradient is enriched for the method
described in Section 3.2, see (Eq. 60); in that case we
use Eq. (62) instead of Eq. (87)) as:

( )T T T 1 i j
0 0 ijC− −= = = ⊗C F F J J J J g g

(87)

where the corresponding components in the gi basis
are Cij=ai⋅aj=JTJ. The transformation of Cij
components to the C*ij components, which are defined
with respect to the ei basis, Eq. (85), can be performed
according to:

[ ] [ ]T T 1
ij 1 2 0 ij 0 1 2

T
ij

C , , C , ,

C

∗ − −⎡ ⎤ ⎡ ⎤= =⎣ ⎦⎣ ⎦

⎡ ⎤= ⎣ ⎦

e e g J J e e g

T T (88)

where the transformation matrix has the following form:

1 2
1 1

1 2
2 2

0

0

0
20 0
h

⎡ ⎤
⎢ ⎥⋅ ⋅
⎢ ⎥

= ⋅ ⋅⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

g e g e

T g e g e (89)

Strains in the local Cartesian frame, Eq. (85), can
then be calculated as:

( )* *
ij ij ij

1E C
2

δ= − (90)

The transformation of the transverse shear strains
from the ξ coordinates to the local Cartesian
coordinates defined with basis ei, Eq. (85), is performed
as [27]:

1
13 131 1 1 2

2 1 2 2 023 23

ˆE E2
ˆhE E

−∗

∗

⎧ ⎫ ⎧ ⎫⋅ ⋅⎡ ⎤⎪ ⎪ ⎪ ⎪=⎨ ⎬ ⎨ ⎬⎢ ⎥⋅ ⋅⎣ ⎦⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭

g e g e
g e g e (91)

where an additional term 2/h0 appears due to the
definition of ζ coordinate which leads to the base

vectors 0
3

h
2

=g g  and 3

0

2
h

=g g .
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With Eqs. (90) and (91) we can define the potential
energy of the shell in terms of Eij* strains. Symbolic
manipulation (see Ref. [24]) is further used to obtain
its first and second derivative with respect to the nodal
unknown kinematic variables leading to residuals and
stiffness matrix. When internal variables are present,
the final form of the stiffness matrix is obtained by the
procedure of static condensation.

5. NUMERICAL EXAMPLES

In this section we present some results of numerical
simulations. The computations were carried out by a
research version of the computer program AceGen (see
Ref. [24]). We have implemented the following 4-node
finite elements listed in Table 1: five for the St. Venant-
Kirchhoff (SVK) material and four for the neo-
Hookean (NH) material with a strain energy function
of the form given by Eq. (25). For the 5-parameter
SVK element we condensed 3D constitutive relations
by using the condition S33=0. In all examples we used
2×2×2 Gaussian integration rule. A tolerance of 10-9

for the Euclidean norm of iterative nodal values was
employed in the Newton iteration scheme for each of
the examples.

Table 1 Finite elements used in numerical examples

5E 5-parameter model with exact (E) strains 
7E 7-parameter model with exact (E) strains; see Eq. (17) 
7R 7-parameter model with reduced (R) strains; see Eq. (23) 

6EA 6-parameter model with exact (E) strains an incompatible 
mode based on an additive (A) decomposition of strains; 
interpolation, Eq. (48) 

6EM 6-parameter model with exact (E) strains and 
incompatible mode based on a. multiplicative (M) 
decomposition of strains; interpolation, Eq. (48) 

5.1 Bending of a strip by end force

This example demonstrates the ability of finite
elements based on non-standard theories to recover
2D shell behavior in the thin shell limit. We consider a
strip of length L=10, width B=1 and thickness h0,
which is clamped at one end and subjected to two point
forces F=F1=40×103×h03 acting on the middle
surface of the free end (see Figure la). Four different
values (2, 1, 0.1, 0.01) are used for thickness
producing length-to-thickness ratios to be 5, 10, 100
and 1000. Material parameters are E=10×106, ν=0.3.
A mesh of 10×1 element is used. We present results of
the nonlinear analyses.

The free end deflections, produced by different
elements, are given in Tables 2 and 3. It can be observed
from Tables 2 and 3 that in the thin shell limit, (L/
h0=1000) the elements 5E, 6AD and 6MD produce
identical results, which indicates that formulations based
on incompatible modes recover the thin shell solution,

while elements based on the 7-parameter theory (7E and
7R) produce approximately 99% of the 5E element
results. It can be also observed that the difference
between the 7E and the 9R solutions increases with
decreasing L/h0 ratio, which suggests that the higher
order strain terms are more important for thicker shells.
The same is valid for incompatible mode formulations:
the difference in results increases with increase of
thickness. In Table 4 we collect maximum values of %λ
at the points with maximum curvatures. Those values
are small: maximum thickness change is around 3% for
beams with L/h0=5. Distribution of %λ  through the beam
length is shown in Figure 1b.

L/h0 5 10 100 1000 
Element/
Material SVK SVK SVK SVK 

5E 7.3492 7.1188 7.0477 7.0470 
7E 7.3037 7.0568 6.9869 6.9874 
7R 7.2624 7.0453 6.9868 6.9874 

6EA 7.3797 7.1278 7.0477 7.0470 
6EM 7.3867 7.1294 7.0478 7.0470 

Fig. 1  Bending of a strip by end force: (a) finite element mesh
and loading; (b) stretch distribution in final deformed

configuration

Table 2 Bending of a strip by end force; end deflection at
F=F1; SVK material

(a)

(b)
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Element/L/h0 5 10 100 
7E 2.847 0.580 0.005 
7R 3.626 0.790 0.007 

6EA 3.154 0.772 0.008 
6EM 2.389 0.804 0.008 

 

Element/L/h0 5 10 100 1000 
5E 34 37 50 62 
7E 34 37 50 63 
7R 34 37 50 63 

6EA 34 37 51 63 
6EM 34 37 51 63 

 

Table 3 Bending of a strip by end force; end deflection at
F=F1; NH material

Table 4 Bending of a strip by end force; maximum values of
%λ  (at the point of maximum curvature) multiplied by
100 at F=F1; SVK material

(Element, Material) / h0 0.2 cm 2 cm 
5E, SVK 35.13 28961 
7E, SVK 35.43 28561 
7R, SVK 35.46 30027 

6EA, SVK 35.12 28935 
6EM, SVK 35.13 28706 

7E, NH 35.47 29445 
7R, NH 35.49 30805 

6EA, NH 35.12 29731 
6EM, NH 35.13 29530 

7E, NH, Ref. [11] 34.71 28636 
7R, NH, Ref. [11] 34.70 28428 

6EA, NH, Ref. [11] 34.71 29984 
6EM, NH, Ref. [11] 34.87 33680 

L/h0 5 10 100 1000 
Element/
Material NH NH NH NH 

7E 7.3404 7.0691 6.9870 6.9874 
7R 7.3083 7.0586 6.9869 6.9874 

6EA 7.4146 7.1401 7.0479 7.0467 
6EM 7.4184 7.1411 7.0479 7.0467 

In Table 5 we present the total number of iterations
when the forces F=F1 are applied in five equal
increments. It is interesting to note that the number of
iterations depends only on the length-to-thickness ratio.

Table 5 Bending of a strip by end force: total number of
iterations; F=F1; SVK material

5.2 Cylinder under line load

In this example we consider a cylinder under line
distributed loading, in order to test the behavior of 3D
shell formulations for thick shell applications. The
cylinder of length L=30 cm, radius R=9 cm and
thickness h0=(0.2 cm, 2 cm) is supported and
subjected to a line load p as shown in Figure 2a. Due to
symmetry conditions only one quarter of the cylinder
is discretized by 16×6 4-node finite elements. The
parameters of the neo-Hookean material are µ=6000
kN/cm2, λ=24000 kN/cm2 or E=16800 kN/cm2,
ν=0.4. The load, which is acting on the middle surface,
was applied in five equal steps.

In Table 6 we compare our results with those given
by Buchter, Ramm and Roehl [7], who used a mesh of
16×6 8-node elements with 2×2×3 Gauss integration
points. Comparison is carried out for a total load when
the displacement of the point under the force at the free
edge (point A) equals to 16 cm. The response curves for
all elements are very similar when it comes to computed
displacement values. In Figure 2b we plotted the
distribution of thickness change. Maximum values of
about 4% are at the free end of the shell (at the region of
maximum curvature) and at the point A. The thickness

stretch of the point A with respect to the total load is
presented in Figures 3a and 3b for SVK and NH material
models. We note that the multiplicative decomposition
based incompatible modes seem to be advantageous over
the additive decomposition in the region of a large
thickness change.

Fig. 2   Cylinder under line load: (a) finite element mesh and
loading; (b) stretch distribution in final deformed configuration

Table 6 Hyperelastic cylinder; total load [kN] when
displacement of point A is 16 cm: 16 × 6 elements

(a)

(b)
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within the standard finite element computer program
architecture.

The main advantage of all presented shell models
relates to a possibility to employ directly a 3D form of
constitutive equations with no presence of locking
phenomena. Additional cures for locking employed by
the derived elements include the assumed natural strain
(ANS) method for the transverse shear locking, and
the exact director vector interpolation for the curvature
locking.

In the thin shell limit the elements with incompatible
modes produce the same results as those obtained by
the classical shell elements based on the Reissner-
Mindlin kinematics (for the chosen numerical
examples); i.e. the enhancement on through-the-
thickness strain is not activated if not needed. The same
is no longer true for the 7-parameter models which
will not necessarily yield the same results as the 5-
parameter model. For thick shells, the numerical results
show that the influence of higher order strains (which
are usually neglected in shell theories) increases. In the
computed examples there were no significant
differences between two incompatible modes methods
(one with an additive decomposition of strains and
another with a multiplicative decomposition of strains)
if thickness change was not extremely significant. The
loading was applied at the shell middle surface in all
numerical examples, however, the results indicate that
the influence of the loading position to local results is
quite important.
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SUVREMENA DOSTIGNU]A U NELINEARNOJ TEORIJI LJUSKI S KONA^NIM
ROTACIJAMA I KONA^NIM DEFORMACIJAMA

SA@ETAK

U ovom ~lanku se analizira teorijska formulacija modela potpuno nelinearne ljuske koji mo`e opisati kona~ne
rotacije i kona~ne deformacije. Ovo drugo nam name}e ideju da treba uzeti u obzir deformacije koje se prote`u
cijelom debljinom što omogu}ava direktno korištenje trodimenzionalnih konstitutivnih jednad`bi iz klasi~nog modela
kontinuuma. Ispitane su tri razli~ite mogu}nosti primjene ovog modela ljuske pomo}u metode kona~nih elemenata.
Prva mogu}nost upu}uje na sedam ~vornih parametara, a preostale dvije mogu}nosti na šest ~vornih parametara.
Sedam-parametarski model ljuske bez pojednostavljenja kinemati~kih izraza uspore|uje se sa sedam-parametarskim
modelom ljuske koji koristi uobi~ajena pojednostavljenja Green-Lagrangeovih deformacija. Ovdje su predstavljena
dva razli~ita na~ina primjene metode inkompatibilnih modova s ciljem da se smanji broj parametara na šest. Jedna
primjena koristi dodatno rastavljanje deformacije, a druga dodatno rastavljanje gradijenta deformacije. Prikazano
je nekoliko numeri~kih primjera za ilustriranje ponašanja razvijenih elemenata ljuske.

Klju~ne rije~i: ljuska, nelinearni model ljuske, kona~ne rotacije, kona~ne deformacije, adaptivna dekompozicija.


