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SUMMARY
The unsteady flow of an incompressible viscous fluid above an infinite rotating disk is studied with heat transfer

in a porous medium. The disk is started motion impulsively from rest and rotates with a constant angular velocity ω.
Numerical solutions of the nonlinear partial differential equations which govern the hydrodynamics and energy
transfer are obtained. The effect of the porosity of the medium on the velocity and temperature distributions is
considered.
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1. INTRODUCTION

The pioneering study of fluid flow due to an infinite
rotating disk was carried out by von Karman in 1921
[1]. Von Karman gave a formulation of the problem
and then introduced his famous transformations which
reduced the governing partial differential equations to
ordinary differential equations. Cochran [2] obtained
asymptotic solutions for the steady hydrodynamic
problem formulated by von Karman. Benton [3]
improved Cochran’s solutions and solved the unsteady
problem. The problem of heat transfer from a rotating
disk maintained at a constant temperature was first
considered by Millsaps and Pohlhausenb [4] for a
variety of Prandtl numbers in the steady state. Sparrow
and Gregg [5] studied the steady state heat transfer
from a rotating disk maintained at a constant
temperature to fluids at any Prandtl number. The
influence of an external uniform magnetic field on the
flow due to a rotating disk was studied in Refs. [6-8].

The effect of uniform suction or injection through a
rotating porous disk on the steady hydrodynamic or
hydromagnetic flow induced by the disk was
investigated in Refs. [9-11].

In the present work, the unsteady laminar flow of a
viscous incompressible fluid due to the uniform
rotation of a disk of infinite extent in a porous medium
is studied with heat transfer. The flow in the porous
media deals with the analysis in which the differential
equation governing the fluid motion is based on the
Darcy’s law which accounts for the drag exerted by
the porous medium [12-14]. The temperature of the
disk is impulsively changed and then maintained at a
constant value. The governing nonlinear partial
differential equations are integrated numerically using
the finite difference approximations with suitable
coordinate transformations to remove a discontinuity
between the initial and boundary conditions. The effect
of the porosity of the medium on the unsteady flow
and heat transfer is presented and discussed.
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2. BASIC EQUATIONS

Let the disk lie in the plane z = 0 and the space z > 0
is equiped by a viscous incompressible fluid. The
motion is due to the rotation of an insulated disk of
infinite extent about an axis perpendicular to its plane
with constant angular speed ω through a porous
medium where the Darcy model is assumed [14].
Otherwise the fluid is at rest under pressure p∞ . The
equations of unsteady motion are given by:
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where u, v and w are velocity components in the
directions of increasing r, ϕ and z respectively, p is
denoting the pressure, µ is the coefficient of viscosity,
ρ is the density of the fluid, and K is the Darcy
permeability [12-14]. We introduce von Karman
transformations [1] of the form:
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where ζ is a non-dimensional distance measured along
the axis of rotation, F, G, H and P are non-dimensional
functions of ζ and t, and ν is the kinematic viscosity of
the fluid, ν = µ /ρ. With these definitions, Eqs. (1) to
(4) take the form:
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where M / Kν ω= is the porosity parameter. The initial
and boundary conditions for the velocity problem are
given by:

t 0, F 0, G 0, H 0,= = = = (9a)

0, F 0, G 1, H 0,ζ = = = = (9b)

, F 0, G 0, P 0.ζ →∞ → → → (9c)

The initial conditions are given by Eq. (9a).
Equation (9b) indicates the no-slip condition of
viscous flow applied at the surface of the disk. Far
from the surface of the disk, all fluid velocities must
vanish aside the induced axial component as indicated
in Eq. (9c). The above system of Eqs. (5) to (7) with
the prescribed initial and boundary conditions given
by Eq. (9) are sufficient to solve the three components
of the flow velocity. Equation (8) can be used to solve
the pressure distribution if required.

Due to the difference in temperature between the
wall and the ambient fluid, heat transfer takes place.
The energy equation without the dissipation terms
takes the form [4-5]:
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where T is the temperature of the fluid, cp is the specific
heat at constant pressure of the fluid, and k is the
thermal conductivity of the fluid. The initial and
boundary conditions for the energy problem are that
the temperature is changed impulsively from rest and,
by continuity considerations, it equals Tw at the
surface of the disk. At large distances from the disk,
T tends to T∞ where T∞ is the temperature of the
ambient fluid. In terms of the non-dimensional variable
θ = (T-T∞) / (Tw-T∞) and using von Karman
transformations, Eq. (10) takes the form:
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where Pr is the Prandtl number, Pr = cp µ / k. The
initial and boundary conditions in terms of θ are
expressed as:

(0, ) 0, ( t ,0 ) 1, ( t , ) 0θ ζ θ θ= = ∞ = (12)
The significant velocity and temperature variations

in the fluid are confined to the region adjacent to the
disk which constructs viscous as well as thermal
boundary layers. We define the thickness of these
layers by certain standard measures [5]. The first of
these is the displacement thickness. Since the radial
flow is zero both at the disk surface and at infinity, a
radial displacement thickness would have very little
meaning. Then, for the tangential direction, we define
a displacement thickness as [5]:



H.A. Attia: Numerical study of unsteady flow with heat transfer due to a rotating disk in porous media

ENGINEERING MODELLING 22 (2009) 1-4, 57-62 59

0

Gdϕδ ζ
∞

= ∫
In physical terms, δϕ gives the thickness of a

fictitious layer of fluid which is rotating at a uniform
tangential velocity rω and is carrying a tangential mass
flow equal to that carried by the actual tangential
velocity distribution.

Also, as a measure of the extent of the thermal layer,
we may introduce a thermal thickness based on the
temperature excess (T - T∞) above the ambient fluid.
Then:

0
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∞

= ∫
Physically speaking, δθ is the thickness of a

fictitious fluid layer at temperature Tw whose integrated
temperature excess over T∞ is identical to that of the
actual temperature distribution.

The heat transfer from the disk surface to the fluid
is computed by application of Fourier’s law:
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Introducing the transformed variables, the
expression for Q becomes:
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By rephrasing the heat transfer results in terms of a
Nusselt number defined as:
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Numerical solution for the governing nonlinear
Eqs. (5) to (7) with the conditions given by Eq. (9),
using the finite differences, leads to a numerical
oscillation problem resulting from the discontinuity
between the initial and boundary conditions (9a) and
(9b). The same discontinuity occurs between the initial
and boundary conditions for the energy problem (see
Eq. (12)). A solution for this numerical problem is
achieved by using proper coordinate transformations,
as suggested by Ames [15] for similar problems.
Expressing Eqs. (5) to (7) and (11) in terms of the

modified coordinate / 2 tη ζ=  we get:
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Equations (13) to (16) represent a coupled system
of non-linear partial differential equations which are
solved numerically under the initial and boundary
conditions (9) and (12) using the finite difference
approximations. A linearization technique is first applied
to replace the nonlinear terms at a linear stage, with the
corrections incorporated in subsequent iterative steps
until convergence is reached. Then the Crank-Nicolson
implicit method is used at two successive time levels
[15]. An iterative scheme is used to solve the linearized
system of difference equations. The solution at a
certain time step is chosen as an initial guess for next
time step and the iterations are continued till
convergence, within a prescribed accuracy. Finally, the
resulting block tri-diagonal system is solved using the
generalized Thomas-algorithm [15]. Finite difference
equations relating the variables are obtained by writing
the equations at the mid point of the computational cell
and then replacing the different terms by their second
order central difference approximations in the η-
direction. The diffusion terms are replaced by the
average of the central differences at two successive
time-levels. The computational domain is divided into
meshes each of dimension ∆t and ∆η in time and space
respectively. The modified Eqs. (13) to (16) are
integrated from t = 0 to t = 1. Then, the solution
obtained at t = 1 is used as the initial condition for
integrating Eqs. (5) to (7) and (11) from t = 1 towards
the steady state.

The resulting system of equations has to be solved
in the infinite domain 0 < ζ < ∞. A finite domain in the
ζ-direction can be used instead with ζ chosen large
enough to ensure that the solutions are not affected by
imposing the asymptotic conditions at a finite distance.
The independence of the results from the length of the
finite domain as well as the grid density was ensured
and successfully checked by various trial and error
numerical experimentations. Computations are carried
out for ζ∞ = 10 and step size ∆ζ = 0.04 which are
found adequate for the ranges of the parameters studied
here. Larger finite distance or smaller step size do not
show any significant change in the results.
Convergence of the scheme is assumed when all of
the variables F, G, H, θ, δF/δζ, δG/δζ, and δθ/δζ for
the last two approximations differs from unity by less
than 10-6 for all values of ζ in 0 < ζ < 10 and all t.



H.A. Attia: Numerical study of unsteady flow with heat transfer due to a rotating disk in porous media

60 ENGINEERING MODELLING 22 (2009) 1-4, 57-62

3. RESULTS AND DISCUSSION

Figures 1 and 2 present the time growth of the
azimuthal, radial, and vertical velocity profiles towards
the steady state, respectively, in the cases M = 0 and
M = 1. The figures indicate that the vertical velocity
component reaches the steady state slower than the
radial velocity component and much slower than the
azimuthal velocity component. This is due to the fact
that the centrifugal effect is the source of the radial
motion which is the source of the vertical motion.
Comparison between Figures 1 and 2 shows the
restraining effect of the porosity of the medium on the
flow and its influence on reducing the time required
for the velocity profiles to approach their steady state
profiles. It is also clear from Figure 1 that the velocity
components F and H do not reach their steady state
profiles monotonically with time. With time progress,
both F and H decrease for small values of ζ (near the
disk) and increase for large ζ. This accounts for the
crossing of each of the F and H profiles with time
which is more apparent for H than for F. Figure 2
indicates the marked effect of the porosity on pushing
the crossover occuring in both F and H profiles far
from the disk.

Figure 3 presents the growth of the profile of the
temperature θ with time for the cases M = 0 and M = 1,
respectively and for Pr = 0.7. It is shown in the figure
that θ reaches the steady state monotonically. Also the
figure indicates the influence of increasing the porosity
parameter on increasing θ as a result of the effect of
the porosity in preventing the fluid at near-ambient
temperature from reaching the surface of the disk.

Figure 4 presents the time variation of the
displacement thickness δϕ and the thermal thickness
δθ, the Nusselt number Nu respectively, for various
values of the porosity parameter M and for Pr = 0.7. It
is concluded from Figure 4a that increasing M
decreases δϕ and its steady state time due to its
restraining effect on G. On the other hand, as shown in
Figure 4b, increasing M increases δθ, and its steady
state time as a result of increasing the temperature θ. It
is clear from Figure 4c that increasing M, which
decreases the axial flow towards the disk, decreases
Nu since the absence of the fluid at near-ambient
temperature close to the surface of the disk increases
the heat transfer. For small values of t, Nu increases
with time until it reaches a maximum value which does
not depend greatly on M (for small values of M) due to
the very small variation in θ. With time progress, the
variation in θ with M increases and then Nu decreases.

Fig. 1 Time variation of the velocity profiles for M = 0

a)

c)

b)
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Fig. 2  Time variation of the velocity profiles for M = 1

Fig. 3  Time variation of the profiles θ for: (a) M = 0; (b) M = 1

Fig. 4  Effect of M on the time variation of: (a) δϕ,; (b) δθ,; and
(c) Nu

4. CONCLUSION

In this study the unsteady flow induced by a rotating
disk with heat transfer in a porous medium was studied.
A proper coordinate transformation is used to remove
the numerical oscillations resulting from the
discontinuity between the initial and boundary
conditions. The results indicate the restraining effect
of the porosity on the unsteady flow. On the other hand,
increasing the porosity parameter increases the
temperature of the fluid. It is observed that the radial
and vertical components of the velocity do not reach
their steady state profiles monotonically which
accounts for crossing of the charts of these velocity
components with time. The porosity of the medium
has an interesting effect on pushing the crossing points
far from the disk.

a)a)

c)

b)

c)

b)

b)

a)



H.A. Attia: Numerical study of unsteady flow with heat transfer due to a rotating disk in porous media

62 ENGINEERING MODELLING 22 (2009) 1-4, 57-62

NUMERI^KA STUDIJA NERAVNOMJERNOG TOKA S PRIJENOSOM TOPLINE ZBOG
ROTIRAJU]EG DISKA U POROZNOM MEDIJU

SA@ETAK

Prou~ava se neravnomjeran tok nestla~ive viskozne teku}ine iznad beskona~nog rotiraju}eg diska s prijenosom
topline u poroznom mediju. Disk se po~eo naglo gibati iz mirnog stanja, a okre}e se konstantnom kutnom brzinom ω.
Dobila su se numeri~ka rješenja nelinearnih parcijalnih diferencijalnih jednad`bi koja opisuju hidrodinamiku i
prijenos energije. Razmatra se i djelovanje poroznosti medija na brzinu i raspodjelu temperature.

Klju~ne rije~i: prijenos topline, rotiraju}i disk, neravnomjerni tok, porozni medij, numeri~ka analiza.
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