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SUMMARY
This paper is concerned with the decision-making on the optimal production batch size and optimal number of

shipments for a finite production rate model with random scrap rate. The classic finite production rate (FPR)
model assumes a continuous inventory issuing policy for satisfying product demand and perfect quality for all items
produced. However, in a real life vendor-buyer integrated production-inventory system, a multiple shipment policy
is practically used in lieu of the continuous issuing policy, and it is inevitable to generate defective items during a
production run. All nonconforming items produced are assumed to be scrap, and the finished (perfect quality)
products can only be delivered to customers if the whole lot is quality assured at the end of the production run. The
fixed-quantity multiple instalments of the finished batch are delivered to customers at a fixed interval of time.
Mathematical modelling is employed and the renewal reward theorem is used to cope with the variable production
cycle length. The long-run average cost for the proposed model is derived, and its convexity is proved by the use of
the Hessian matrix equations. A closed-form optimal production-shipment policy for such an imperfect FPR model
is obtained and a special case is discussed. Finally, a numerical example is provided to demonstrate the model’s
practical usage.
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1. INTRODUCTION

The purpose of this study is to determine jointly the
optimal production lot size and optimal number of
shipments for a finite production rate (FPR) model with
scrap. The FPR model is commonly used in the
manufacturing sector to assist firms in minimizing
overall production-inventory costs [1,2]. It employed
a mathematical model to describe the important trade-
off between the fixed set-up costs and inventory holding
costs when items are produced in batch at a finite
replenishment rate. The FPR model derives an
economic production quantity that minimizes the long-
run average production-inventory cost per unit time.

The classical FPR model (also known as the
economic production quantity (EPQ) model) assumes
a “continuous” inventory issuing policy for satisfying
product demand. However, in a real life vendor-buyer

integrated production-inventory system, multiple or
periodic deliveries of finished products are commonly
used at customer’s request. Goyal [3] first studied the
integrated inventory model for the single supplier-
single customer problem. He proposed a method that
is typically applicable to those inventory problems
where a product is procured by a single customer from
a single supplier, and an example was provided to
illustrate his proposed method. Studies have since been
carried out to address various aspects of vendor-buyer
supply chain optimization issues [4-12]. Jamal and
Sarker [4] determined an economic manufacturing
quantity and recommended a raw material ordering
policy to deliver a fixed amount of finished products
at a regular interval within the production cycle time.
They estimated the batch size from the lower bound
concept of the JIT delivery amount and developed an
algorithm for computing the optimal or near optimal
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batch sizes for both manufacturing and raw material
ordering policies. Lu [6] investigated a one-vendor
multi-buyer integrated inventory model with the
objective of minimizing vendor’s total annual cost
subject to the maximum costs that the buyers may be
prepared to incur. Lu’s model required to know buyer’s
annual demand and previous order frequency. As a
result, an optimal solution for the one-vendor one-
buyer case was obtained and a heuristic approach for
the one-vendor multi-buyer case was also provided.
Viswanathan [8] examined the integrated vendor-buyer
inventory models with two different strategies that had
been proposed in the literature for the problem: one
where each replenishing quantity delivered to the buyer
is identical and the other strategy where at each
delivery all the inventory available with the vendor is
supplied to the buyer. He showed that there is no one
strategy that obtains the best solution for all possible
problem parameters. His study presented the results of
a detailed numerical investigation that analyzed the
relative performance of the two strategies for various
problem parameters. Hill [9] examined a model in
which a manufacturing company purchases a raw
material, manufactures a product (at a finite rate) and
ships a fixed quantity of the product to a single
customer at fixed and regular intervals of time, as
specified by the customers. The objective is to
determine a purchasing and production schedule which
minimizes the overall costs of purchasing,
manufacturing, and stockholding. Diponegoro and
Sarker [11] determined ordering policy for raw
materials as well as an economic batch size for finished
products that are delivered to customers frequently at
a fixed interval of time for a finite planning horizon.
The problem was then extended to compensate for the
lost sales of finished products. A closed-form solution
to the problem was obtained for the minimal total cost.
They also developed a lower bound on the optimal
solution for problem with lost sale. Ouyang et al. [12]
studied the single-vendor single-buyer integrated
production inventory models with stochastic demand in
controllable lead time. They assumed that shortage
during lead time is permitted and lead time can be
reduced at an added cost, and developed iterative
procedures for finding the optimal policies accordingly.

In addition to the continuous issuing policy, the
“perfection production” is another unrealistic
assumption of the classic FPR model. However, in a
real life manufacturing environment, owing to various
different factors, it is inevitable to generate
nonconforming items during a production run. Studies
have been carried out to enhance the conventional FPR
model by addressing the issue of imperfect quality
production [13-20]. The defective items produced,
sometimes can be reworked and repaired; therefore,
total production-inventory costs can be significantly
reduced. For instance, production processes in printed
circuit board assembly (PCBA), or in plastic injection

molding, or in other industries such as chemical,
textiles, metal components, etc., sometimes employ
rework as an acceptable process in terms of level of
product quality [21-27]. Yu and Bricker [21] presented
an informative application of Markov Chain Analysis
to a multistage manufacturing problem. Liu and Yang
[22] considered a lot-sizing problem in a single-stage
imperfect production system where the job processing
is failure-prone. The processing may generate two
types of defects: reworkable and scrap. The production
process will switch between new jobs and rework jobs
and both new-job processing time and rework time are
random. They discussed the optimal lot-sizing control,
under a class of operating policies, to maximize the
average profit over an infinite time horizon. They
demonstrated the existence of an optimal lot size and
developed an algorithm for determining an optimal lot
size. Jamal et al. [24] studies the optimal production
batch size with rework process at a single-stage
production system. Both cases of rework being
completed within the same production cycle and
rework being done after N cycles are examined.
Mathematical models for each case were developed;
the optimal batch sizes and total system costs were
derived respectively. Chiu [26] derived the optimal lot
size and backorder level for an EMQ model with
backlogging, random defective rate, scrap, and
imperfect rework process.

Little attention has been paid to study the joint
decision-makings on the optimal production batch size
and optimal number of shipments for an FPR model
with random scrap rate, therefore this paper is intended
to bridge the gap.

2. MATHEMATICAL MODELLING AND
ANALYSIS

This study considers a production system where
the process may randomly produce an x portion of
defective items at a production rate d. All items
produced are screened and inspection cost per item is
included in the unit production cost C. All
nonconforming items are assumed to be scrap and are
discarded at the end of production. In order to prevent
shortages from occurring, the constant production rate
P must be larger than the sum of demand rate λ and
production rate of defective items d. That is: (P-d-λ)>0
or (1-x-λ/P)>0. The production rate of scrap items d
can be expressed as d=Px. Unlike the classic FPR
model assuming a continuous issuing policy for
satisfying demand, this research considers a multi-
shipment policy. It is also assumed that the finished
items can only be delivered to customers if the whole
lot is quality assured at the end of production. Fixed
quantity n instalments of the finished batch are
delivered to customers at a fixed interval of time during
the production downtime t2 (refer to Figure 1).
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Fig. 1  On-hand inventory of perfect quality items in FPR
model with scrap and a multiple shipment policy

The following cost parameters are also included in
this paper: the disposal cost per scrap item CS, setup
cost K, unit holding cost h, unit production cost C,
fixed delivery cost K1 per shipment, and delivery cost
CT per item shipped to customers. Additional notation
is listed in Appendix 1. From Figure 1, the following
parameters can be obtained directly [23, 25]:
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The on-hand inventory of scrap items during
production uptime t1 are illustrated in Figure 2. One
notes that maximum level of on-hand scrap items is
dt1, and:

1 1dt Pxt xQ.= = (6)

Fig. 2  On-hand inventory of scrap items in FPR model with
scrap and a multiple shipment policy

Cost for each delivery is:
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n

⎛ ⎞+ ⎜ ⎟
⎝ ⎠

(7)

Total delivery costs for n shipments in a cycle are:
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The variable holding costs for finished products
kept by the manufacturer, during the delivery time t2
where n fixed-quantity instalments of the finished batch
are delivered to customers at a fixed interval of time,
are as follows (see Appendix 2 for derivations):

2
n 1h Ht
2n
−⎛ ⎞

⎜ ⎟
⎝ ⎠

(9)

The variable holding costs for finished products kept
by the customer during the delivery time t2, are as
follows (see Appendix 3 for the detailed computations):

( )2
2 2

h H t T H t
2 n
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(10)

Total production-inventory-delivery cost per cycle
TC(Q,n) consists of the setup cost, variable production
cost, disposal cost, fixed and variable delivery cost,
holding cost during production uptime t1, and holding
cost for finished goods kept by both the manufacturer
and the customer during the delivery time t2. Therefore,
TC(Q,n) is:
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(11)

The proportion x of scrap items is assumed to be a random variable with a known probability density function.
In order to take the randomness of defective rate into account, the expected values of x can be used in the cost
analysis. Substituting all parameters from Eqs. (1) to (10) in TC(Q,n), the expected cost E[TCU(Q,n)] can be
obtained (see Appendix 4 for computations):
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3. PROOF OF CONVEXITY

For the proof of convexity of E[TCU(Q,n)], one can use the Hessian matrix equations [28, 29] and verify
whether the following condition (Eq. (13)) holds or not:
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From Eq. (12), one obtains the following terms:

( )
[ ]( ) [ ]( ) [ ]( )

[ ]( ) [ ]( )

1 2
2 2

2

E TCU Q,n nK hK h 11
Q n 2P2P 1 E xQ 1 E x Q 1 E x

h 1 E x h1 h 11 1 E x
n 2 2P n 2

λ λλ λ

λ

∂ ⎡ ⎤ ⎛ ⎞⎣ ⎦ = − − + + − +⎜ ⎟∂ − ⎝ ⎠− −

⎡ ⎤−⎛ ⎞ ⎛ ⎞                               + − − + −⎢ ⎥⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

(14)

( ) ( )
[ ]( )

2
1

2 3

E TCU Q,n 2 K nK
Q Q 1 E x

λ∂ ⎡ ⎤ +⎣ ⎦ =
∂ −

(15)

( )
[ ]( ) ( ) [ ]( )1

22

Q 1 E xE TCU Q,n K 1 Qh h
n 2 2PQ 1 E x n

λ λ⎡ ⎤−∂ ⎡ ⎤⎣ ⎦ = − − −⎢ ⎥
∂ − ⎢ ⎥⎣ ⎦

(16)

( )
( ) [ ]( )

2

22 3

E TCU Q,n 1 Qh h Q 1 E x
Pn n
λ∂ ⎡ ⎤ ⎡ ⎤⎣ ⎦ = − − −⎢ ⎥⎣ ⎦∂

(17)

( )
[ ]( )

[ ]( ) [ ]( )
2

1 2 2
2 2 2 2

h 1 E xE TCU Q,n K h h1 h 1 11 E x
Q n 2 2P 2 2PQ 1 E x n n n

λ λλ⎡ ⎤−∂ ⎡ ⎤ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎣ ⎦ = − + − − − +⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ − ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦
(18)

Substituting Eqs. (15), (17) and (18) in the Hessian matrix equations, one has:
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Equation (19) is resulting positive, because K, λ, (1-E[x]), and Q are all positive. Hence, it follows that the
expected integrated costs E[TCU(Q,n)] is a strictly convex function for all Q and n different from zero. Therefore,
the convexity of E[TCU(Q,n)] is proved, and there exists a minimum of E[TCU(Q,n)].
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4. DERIVATION OF THE OPTIMAL SOLUTIONS

To derive jointly the optimal production lot size Q* and optimal number of shipments n*, one can differentiate
E[TCU(Q,n)] with respect to Q and with respect to n, and solve the linear system of Eqs. (14) and (16) by setting
these partial derivatives equal to zero.

With further derivations, one obtains:
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and:
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4.1 Special Case

Suppose that all items produced are of perfect quality, i.e. x=0, then the proposed model becomes the same as
the classic FPR model with multiple shipments. Total cost per cycle is:
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The expected production-inventory-delivery cost per unit time for this special model is:

( )
( )

[ ]
( )1 1

1 T

2

E TC Q,n K nK hQE TCU Q,n C C
E T Q 2P

h Qn 1 hQ hQ 1 n 1
n 2 2P 2 n n P

λ λλ λ

λ λ

⎡ ⎤ +⎣ ⎦= = + + + +⎡ ⎤⎣ ⎦

− ⎡ − ⎤⎛ ⎞ ⎡ ⎤ ⎛ ⎞ ⎛ ⎞                           + − + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥⎢ ⎥⎝ ⎠ ⎣ ⎦ ⎝ ⎠ ⎝ ⎠⎣ ⎦
(24)

The convexity of E[TCU1(Q,n)] can also be proved and the optimal solutions to this special model can be
obtained as follows:
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5. NUMERICAL EXAMPLE

Assume that a manufactured item can be produced at a rate of 60,000 units per year and it has experienced a flat
demand rate of 3,400 units per year. There is a random scrap rate during the production uptime which follows a
uniform distribution over the interval [0, 0.3]. Additional parameters used in this example are:
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K = $20,000 per production run,
C = $100 per item,
CS = $20, repaired cost for each item reworked,
K1 = $4,350 per shipment, a fixed cost,
h2 = $80 per item kept at the customer’s end per unit

time,
h = $20 per item per year,
CT = $0.1 per item delivered.

From Eqs. (22), (21) and (12), the optimal number
of delivery n*=3, the optimal production lot size
Q*=2,652, and the long-run average cost
E[TCU(Q*,n*)]=$512,047 can be obtained. It may be
noted that n* should practically be an integer number,
so in this example n*=3 is rounded off from its original
value 3.1733 computed by Eq. (22). Also, because
E[TCU(Q*,n*)] is not necessarily symmetrical on both
sides of n*, in the case of n* falling closer to the
midpoint of two integers, we suggest that both integer
numbers should be plugged into Eq. (12), and select
whichever integer value gives the minimum cost as n*.

The effect of variation of the number of shipments
n on the long-run integrated cost function
E[TCU(Q,n)] is depicted in Figure 3. It is noted that in
this numerical example, the optimal integer number of

Fig. 4  Variation of random scrap rate effects on the long-run
integrated cost function E[TCU(Q*,n*)]

shipments n*=3.
Fig. 3  Variation of the number of shipments effects on the long-

run integrated cost function E[TCU(Q,n)]

Variation of the random scrap rate x effects on the
long-run integrated cost function E[TCU(Q*,n*)] is
illustrated in Figure 4. It is noted that as the random
scrap rate x increases, the value of the long-run cost
function E[TCU(Q*,n*)] increases significantly.
Figure 5 shows the convexity of the long-run integrated
cost function E[TCU(Q,n*=3)].

Furthermore, the optimal solutions for the special
case can be obtained by using Eqs. (26), (25) and (24)
respectively: the optimal number of delivery n*=3 (is
rounded off from 3.257), the optimal lot size
Q*=2,276, and the long-run integrated costs
E[TCU1(Q*,n*)]=$439,101.

Fig. 5  Convexity of the long-run integrated cost function
E[TCU(Q,n*=3)]

6. CONCLUDING REMARKS

The classic FPR model implicitly assumes a
continuous inventory issuing policy and perfect
quality production for all items produced. However,
in a real life vendor-buyer integrated production-
inventory system, multi-shipment policy is practically
used in lieu of the continuous issuing policy, and
generation of defective items during a production run
is inevitable. The present study combines a multiple
shipment policy and quality assurance into an FPR
model with scrap. Mathematical modeling and analysis
are used. The renewal reward theorem is employed
to cope with the variable cycle length. The long-run
integrated production-inventory-delivery cost per unit
time for the proposed model is derived, and its
convexity is proved by the use of the Hessian matrix
equations. A closed-form solution of the optimal
production-shipment policy for such an imperfect
FPR model is obtained.
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It may be noted that without an in-depth
investigation and robust analysis of such a realistic
system, the optimal production-shipment policy that
minimizes the long-run average integrated costs cannot
be obtained, and insight regarding the effects of system
parameters (as depicted in Figures 4 to 6) cannot be
gained. One interesting topic for future research will
be to investigate the effect on optimal production-
shipment policy when shortages are allowed and
backordered in such a realistic system.
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APPENDIX 1

Notation:
T − production cycle length,
Q − production lot size, a decision variable, to be

determined for each cycle,
n − number of fixed quantity installments of the

finished batch to be delivered to customers, a
decision variable, to be determined for each
cycle,

t1 − the production uptime for the proposed FPR
model,

t2 − time required for delivering all quality assured
finished products,

H − maximum level of on-hand inventory in units
when regular production process ends,

tn − a fixed interval of time between each instalment
of finished products delivered during production
downtime t2,

I(t) − on-hand inventory of perfect quality items at
time t,

Id(t) −on-hand inventory of scrap items at time t,
TC(Q,n) − total production-inventory-delivery costs

per cycle for the proposed model,
TC1(Q,n) − total production-inventory-delivery per

cycle when no defective items produced (i.e. the
special case - classic FPR model with multi-delivery
policy),

E[TCU(Q,n)] − the long-run average costs per unit
time for the proposed model,

E[TCU1(Q,n)] − the long-run average costs per unit
time for model in the special case.

APPENDIX 2

Computations of the manufacturer’s holding cost
of finished products during t2 (i.e. Eq. (9)) are as
follows:
(1) When n=1, total holding cost in delivery time = 0;

Fig. 6  On-hand inventory of the finished items kept by
manufacturer during time t2 in FPR model with scrap

and a multiple shipment policy

(3) When n=3, total holding costs in delivery time are:

2 2
2

t t2H 1Hh h Ht
3 3 2

2 +1 ⎛ ⎞⎛ ⎞×  + ×  =⎜ ⎟ ⎜ ⎟3 3⎝ ⎠ 3⎝ ⎠
(28)

(4) When n=4, total holding costs in delivery time
become:

2 2 2
22
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4 4 4 4

 3 2 1 3 + 2 +1⎛ ⎞⎛ ⎞× + × + × =⎜ ⎟ ⎜ ⎟4 4 4⎝ ⎠  ⎝ ⎠
(29)

Therefore, the following general term for total
holding costs during delivery time t2 can be obtained
by mathematical induction:

n 1

2 2 22 2
i 1

1 1 n( n 1) n 1h i Ht h Ht h Ht
2 2nn n

−

=

⎛ ⎞ − −⎛ ⎞ ⎛ ⎞⎡ ⎤ ⎛ ⎞ =  =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥⎜ ⎟ ⎣ ⎦ ⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠
∑

(30)

APPENDIX 3

Computations of the customer’s holding cost during
time t2 (i.e. Eq. (10)) are as follows.

Because n instalments (fixed quantity D) of the
finished lot are delivered to customer at a fixed interval
of time tn, one has the following:

HD
n

= (31)

2
n

tt
n

 = (32)

At the customer’s end, the demand between
shipments is (λtn), if we let I denote number of items
that will be left over after satisfying the demand during
each fixed interval of time tn (refer to Figure 7), then:

 nI D tλ= −  (33)

(2) When n=2, total holding costs in delivery time
become (see Figure 6):

2
22

tH 1h h Ht
2 2 2

 ⎛ ⎞⎛ ⎞×  =  ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

(27)
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Fig. 7  On-hand inventory of the finished items kept by customer during time t2 in FPR model with scrap and a multiple shipment policy

From Figure 7, one can calculate the average inventory as follows:

( ) ( ) ( ) ( )

( ) ( )
( )

n n
n n n

n
n 1

D I D I t D 2I D 2I tD IAverage inventory t t t ...
2 2 2

D n 1 I D n 1 I t nI                                  ... t t
2 2

λ λ

λ

⎡ ⎤ ⎡ ⎤+ + + − + + + −⎡ ⎤ ⎡ ⎤⎡ + ⎤⎛ ⎞ ⎣ ⎦ ⎣ ⎦= + + +⎢ ⎥ ⎢ ⎥⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
⎡ ⎤⎡ ⎤+ − + + − −⎡ ⎤ ⎡ ⎤ ⎛ ⎞⎣ ⎦ ⎣ ⎦⎣ ⎦⎢ ⎥   + + ⎜ ⎟⎢ ⎥ ⎝ ⎠⎣ ⎦

(34)

or:

( ) ( )

( )

n n n n n n

n n 1

n n n

Average inventory D t t D I t t D 2I t t ...
2 2 2

nID n 1 I t t t
2 2

n n 1
                    n D t t It

2 2

λ λ λ

λ

λ

⎛ ⎞ ⎛ ⎞ ⎛ ⎞= − + + − + + − +  ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛ ⎞                                  ... + + − − + =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

−⎛ ⎞          = − + +⎜ ⎟
⎝ ⎠

( )1
nI t
2

(35)

Substituting Eqs. (31) through (33) into Eq. (35), general term for average inventory at the customer’s end can
be obtained:

( ) ( )

( ) ( ) ( ) ( )( )

( ) ( )

n n n n n 1

2 2
n n n n 1 n 1

2 2

n n 1H H n HAverage inventory n t t t t t t
n 2 2 n 2 n

n 1 n n 1n H nHt t Ht t t t t
2 2 2 2 2

1 / 2 Ht / n T H t

λ λ λ

λ λ λ

λ

−⎛ ⎞ ⎛ ⎞ ⎛ ⎞= − + − + − =⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

− −
                               = − + − + − =

                               = + −⎡ ⎤⎣ ⎦ (36)

APPENDIX 4

Computation of Eq. (12):
Recall Eq. (11) as follows:

( ) [ ] ( )

( ) ( )

S T 1

1 2
1 2 2 2

TC Q,n CQ K C xQ C Q 1 x nK

H dt hn 1 H               h t Ht t T H t
2 2n 2 n

λ

= + + + − + +⎡ ⎤⎣ ⎦
+⎡ − ⎤⎛ ⎞ ⎡ ⎤+ + + + −⎜ ⎟⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎣ ⎦⎣ ⎦

(11)

then:
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( ) [ ] ( )

( ) ( )

( ) ( ) ( )

1 S T

22 22

22
2

TC Q,n CQ K nK C xQ C Q 1 x

hQ 1 x hQ 1 xhQ n 1               
2P n 2 2P

1 x n 1 1 xh Q               
2n P

λ

λ

= + + + + − +⎡ ⎤⎣ ⎦
⎡ ⎤− −−⎛ ⎞ ⎢ ⎥+ + − +⎜ ⎟ ⎢ ⎥⎝ ⎠ ⎣ ⎦

⎡ ⎤− − −
⎢ ⎥+ +
⎢ ⎥⎣ ⎦

(37)

Since:

( )
( )

[ ]
E TC Q

E TCU Q
E T

⎡ ⎤⎣ ⎦=⎡ ⎤⎣ ⎦ (38)

with further derivations, one obtains Eq. (12) as follows:

( )
( )
[ ] [ ]

( )
[ ]( )

[ ]
[ ]( ) [ ]( )

[ ]( ) [ ]( )

S1
T

2

E TC Q,n C E xK nKC hQE TCU Q,n C
E T 1 E x Q 1 E x 1 E x 2P 1 E x

hQ 1 E x h Qn 1 hQ 1 n 11 E x
n 2 2P 2 n n P

λλλ λλ

λ λ

⎡ ⎤ +⎣ ⎦= = + + + + +⎡ ⎤⎣ ⎦ − − − −

⎡ ⎤−− ⎡ − ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞                              + − + − +⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦⎢ ⎥⎣ ⎦
(12)
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DONOŠENJE ODLUKE O OPTIMALNOJ PROIZVODNJI I ISPORUCI ZA MODEL
OGRANI^ENE PROIZVODNJE S OTPACIMA

SA@ETAK

Ovaj rad se bavi donošenjem odluka o optimalnoj koli~ini serijske proizvodnje, te o optimalnom broju isporuka
za model ograni~ene proizvodnje sa slu~ajnim omjerom otpadaka. Klasi~ni model ograni~ene proizvodnje (FPR)
pretpostavlja politiku kontinuiranog izdavanja inventara u svrhu zadovoljenja potra`nje za proizvodom kao i savršenom
kvalitetom svega proizvedenog. Me|utim, u stvarnom prodava~-kupac integriranom proizvodno-skladištenom sustavu,
koristi se politika višekratne isporuke umjesto politike kontinuirane isporuke pa je neizbje`na pojava ošte}enih
proizvoda za vrijeme proizvodnje. Svi neodgovaraju}i predmeti smatraju se otpacima, a dovršeni (savršene kvalitete)
prozvodi mogu se isporu~iti kupcima ako je sveukupna proizvedena koli~ina dokazano kvalitetna na kraju proizvodnje.
Fiksna koli~ina višestrukih obroka kona~ne serije isporu~uje se kupcima u fiksnom vremenskom intervalu. Da bi se
savladala promjenjiva duljina ciklusa, korišten je matemati~ki model i "renewal reward" teorem. Dobiven je dugoro~ni
prosje~ni trošak predlo`enog modela, a njegova konveksnost je dokazana pomo}u Hesseovih matrica. Postignut je
zatvoreni oblik politike optimalne proizvodnje i isporuke za jedan takav nesavršeni FPR model, a prodiskutiran je
jedan poseban slu~aj. Kona~no, pokazan je jedan numeri~ki primjer kako bi se ukazalo na prakti~no korištenje
modela.

Klju~ne rije~i: proizvodnja, mnogostruke isporuke, FPR model, otpadak, optimalna koli~ina serije, inventar.
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