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SUMMARY
The time varying flow of an incompressible viscous non-Newtonian fluid above an infinite rotating porous disk

in a porous medium is studied with heat transfer. A uniform injection or suction is applied through the surface of the
disk. Numerical solutions of the nonlinear partial differential equations which govern the hydrodynamics and
energy transfer are obtained. The effect of the porosity of the medium, the characteristics of the non-Newtonian
fluid and the suction or injection velocity on the velocity and temperature fields is considered.
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1. INTRODUCTION

The study of the hydrodynamic flow due to an
infinite rotating disk was carried by von Karman [1]
who gave a formulation of the problem and then
introduced his famous transformations which reduced
the governing partial differential equations to ordinary
differential equations. Cochran [2] obtained
asymptotic solutions for the steady hydrodynamic
problem formulated by von Karman. Benton [3]
improved Cochran’s solutions and extended the
problem to the transient state. The steady state heat
transfer from a rotating disk maintained at a constant
temperature was first considered by Millsaps and
Pohlhausen [4] for a variety of Prandtl numbers, then
Sparrow and Gregg [5] solved the problem for any
Prandtl number. Attia [6] extended the problem

discussed in [4, 5] to the unsteady state in the
presence of an applied uniform magnetic field. The
steady flow of a non-Newtonian fluid due to a rotating
disk with uniform suction was considered by Mithal
[7]. Then, Attia [8] extended the problem to the
transient state with heat transfer. The study of a
Newtonian fluid flow in a porous medium is studied
by Attia [9] in the presence of uniform suction and
injection.

In the present paper, the time varying laminar flow
through a porous medium of an incompressible viscous
non-Newtonian fluid due to the uniform rotation of a
porous disk of infinite extent is studied with heat
transfer. A uniform injection or suction is applied
through the surface of the disk. The flow in the porous
medium deals with the analysis in which the differential
equation governing the fluid motion is based on the
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Darcy’s law which accounts for the drag exerted by
the porous medium [10, 11]. The governing nonlinear
partial differential equations are solved numerically
using the finite difference method. The effect of the
porosity of the medium, the characteristics of the non-
Newtonian fluid and the suction or injection velocity
on the time varying flow and heat transfer is presented.

2. BASIC EQUATIONS

Let the disk lie in the plane z=0 and the space z>0 is
equipped by an incompressible viscous non-Newtonian
fluid. The motion is due to the impulsive rotation from
rest of an insulated disk of infinite extent about an axis
perpendicular to its plane with constant angular speed
ω through a porous medium where the Darcy model is
assumed [10]. Otherwise the fluid is at rest under
pressure p∞. The disk is maintained at a constant
temperature Tw. A uniform injection or suction is applied
at the surface of the disk for the entire range of suction
or injection velocity.

The non-Newtonian fluid considered in the present
paper is that for which the stress tensor τij is related to
the rate of strain tensor eij as [7]:

i i i k i i
j j c k j j j2 e 2 e e p ,e 0,τ µ µ δ= + − =

where p is denoting the pressure, µ is the coefficient
of viscosity and µc is the coefficient of cross viscosity.
The equations of steady motion are given by:
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where u, v and w are the velocity components in the
directions of increasing r, ϕ and z respectively, µ is the
coefficient of viscosity, ρ is the density of the fluid,
and K1 is the Darcy permeability [10, 11]. We introduce
von Karman transformations [1]:
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= = =

= − = −

where ζ  is a non-dimensional distance measured along
the axis of rotation, F, G, H and P are non-dimensional
functions of ζ and t, and ν  is the kinematic viscosity
of the fluid, ν = µ / ρ. With these transformations, Eqs.
(1) to (4) take the form:
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where M is the porosity parameter, 1M / Kν ω= , and K
is the non-Newtonian parameter. The initial and boundary
conditions for the velocity problem are given by:

t=0 :  F=0,  G=0,  H=0 (9a)
ζ=0 :  F=0,  G=1,  H=S (9b)

ζ→∞ : F→0,  G→0,  P→0 (9c)
where S is the uniform suction or injection parameter,

oS w / ων= , which takes constant negative values
for suction and constant positive values for injection,
and w0 is the vertical velocity component at the surface.
The above system of Eqs. (5) to (7) with the prescribed
boundary conditions given by Eq. (9) are sufficient to
solve for the flow velocity. Equation (8) can be used to
solve for the pressure distribution if required.

Due to the difference in temperature between the
wall and the ambient fluid, heat transfer takes place.
The energy equation without the dissipation terms takes
the form [4, 5]:

2 2
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T T T T T 1 Tc ( u w ) k( ) 0
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ρ ∂ ∂ ∂ ∂ ∂ ∂
+ + − + + =

∂ ∂ ∂ ∂∂ ∂
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where T is the temperature of the fluid, cp is the specific
heat at constant pressure of the fluid, and k is the
thermal conductivity of the fluid. The boundary
conditions for the energy problem are that, by
continuity considerations, the temperature equals Tw at
the surface of the disk. At large distances from the
disk, T tends to T∞ where T∞ is the temperature of the
ambient fluid. In terms of the non-dimensional variable
θ = (T-T∞) / (Tw-T∞) and using von Karman
transformations, Eq. (10) takes the form:

2

2
r

1 H 0
t P
θ θ θ
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− + =
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where Pr is the Prandtl number, Pr=cpµ/k. The initial
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boundary conditions in terms of θ are expressed as:
t=0 :  θ=0 (12a)

θ(0)=1,  θ(∞)=0 (12b)
The heat transfer from the disk surface to the fluid

is computed by application of Fourier’s law:

w
dTQ k( )
dz

= −

Introducing the transformed variables, the
expression for Q becomes:

w
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By rephrasing the heat transfer results in terms of a
Nusselt number defined as:

u wN Q / / k(T T )ω ν ∞= −
the last equation becomes:

u
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Numerical solution for the governing nonlinear Eqs.
(5) to (7) with the conditions given by Eq. (9), using
the finite differences, leads to a numerical oscillation
problem resulting from the discontinuity between the
initial and boundary conditions (9a) and (9b). The same
discontinuity occurs between the initial and boundary
conditions for the energy problem (see Eq. (12)). A
solution for this numerical problem is achieved using
proper coordinate transformations, as suggested by
Ames [12] for similar problems. Expressing Eqs. (5)
to (7) and (11) in terms of the modified coordinate

/ 2 tη ζ= , we get:
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Equations (13) to (16) represent a coupled system
of non-linear partial differential equations which are
solved numerically under the initial and boundary
conditions in Eqs. (9) and (12), respectively using finite
difference approximations. A linearization technique is

first applied to replace the nonlinear terms at a linear
stage, with the corrections incorporated in subsequent
iterative steps until convergence is reached. The Crank-
Nicholson implicit method is then used at two
successive time levels [12]. An iterative scheme is used
to solve the linearized system of difference equations.
The solution at a certain time step is chosen as an initial
guess for next time step and the iterations are continued
till convergence, within a prescribed accuracy. Finally,
the resulting block tri-diagonal system is solved using
the generalized Thomas-algorithm [12]. Finite
difference equations relating the variables are obtained
by writing the equations at the mid point of the
computational cell and then replacing the different
terms by their second order central difference
approximations in the η-direction. The diffusion terms
are replaced by the average of the central differences
at two successive time-levels. The computational
domain is divided into meshes each of dimension ∆t
and ∆η in time and space respectively. The modified
Eqs. (13) to (16) are integrated from t=0 to t=1. Then,
the solution obtained at t=1 is used as the initial
condition for integrating Eqs. (5) to (7) and (11) from
t=1 up till the steady state.

The resulting system of equations has to be solved
in the infinite domain 0<ζ<∞. A finite domain in the
ζ-direction can be used instead with ζ chosen large
enough to ensure that the solutions are not affected by
imposing the asymptotic conditions at a finite distance.
The independence of the results from the length of the
finite domain as well as the grid density was ensured
and successfully checked by various trial and error
numerical experimentations. Computations are carried
out for ζ∞=10 and step size ∆ζ=0.04 which are found
adequate for the ranges of the parameters studied here.
Larger finite distance or smaller step size do not show
any significant change in the results. Convergence of
the scheme is assumed when all of the variables F, G,
H, θ, ∂F/∂ζ, ∂G/∂ζ, and ∂θ/∂ζ for the last two
approximations differs from unity by less than 10-6

for all values of ζ in 0<ζ<10 and all t.

3. RESULTS AND DISCUSSION

The evolution of the axial velocity component at
infinity Hf  for K=0 and M=0 is shown in Figure 1a
for various values of the parameter S. It is clear that
increasing the suction velocity increases the axial
velocity towards the disk and decreases its growth
time up to the steady state. For small values of the
suction parameter, the effects of the radial flow in
addition to the suction through the disk help to
increase the quantity of fluid drawn with time. Then,
two paths are available for the incoming fluid, one
through the suction holes of the disk and another in
the radial direction. Higher values of the suction
velocity provide an easier path for the flow through
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the wall than that in the radial direction and result in
an almost time-independent inflowing stream towards
the disk. For the case of injection, Hf initially equals
the injection velocity and for few radians of the
rotation of the disk it keeps its positive direction. With
time progression, the radially ejected fluid pumps the
flow towards the disk and a crossover point in time
that depends on the injection parameter S occurs and
the axial flow reverses direction till its steady state
value. The greater the injection velocity the more
strongly the inflow opposed and, consequently, the
later appearance of the crossover of the axial velocity.
Notice that, the axial velocity towards the disk
increases monotonically with time. It is also depicted
that the fluid injection at the disk results in the familiar
inflection-point shapes, especially for large values of
the injection parameter S. Therefore it is expected that
high injection velocities tend to destabilize the laminar
flow and lead to transition to turbulence.

Figure 1b indicates the effect of the non-
Newtonian fluid characteristics on Hf for different
values of the parameter S with K=1 and M=0. The
figure shows that Hf  overshoots for all suction or
injection velocities. The overshooting is more
pronounced for the case of injection than suction and
it increases with the increment in the parameter S
while the time at which it occurs decreases.
Comparison between Figures 1a and 1b indicates that
the time of appearance of the crossover points in the
case of injection increases with increasing K. It is
also shown in Figure 1b that in the case of zero
velocity at the disk (S=0), there is a reversal in the
direction of Hf  and a crossover in time occurs in this
case. The parameter K tends generally to resist the
axial flow towards the disk and reduces its velocity
and growth time. It is evident from Figures 1a and 1b
that increasing K gives rise to the inflection-point
shapes of Hf with time for all values of the injection
velocities and even in the case of zero injection
velocity. Consequently, the increment in K is expected
to destabilize the laminar flow. Notice that, in the case
of large suction velocities, the incoming flow velocity
reaches a steady state value lower than that at the
disk. It is also clear that for large values of time, the
parameter K has more apparent effect on Hf  in the
case of suction more than that in the case of injection.

Figure 1c indicates the effect of the porosity on
Hf for different values of the suction or injection
parameter S with K=0 and M=1. The porosity leads
generally to a reduction in the magnitude of the axial
velocity at infinity and its growth time. For the case
of uniform suction, the porosity has an apparent
effect on the flow for small values of the suction
parameter while its effect becomes negligible for large
values of S. In the case of uniform injection, the

porosity restrains the azimuthal and radial flows and
then supports the out flowing stream of injected flow
to stop completely the drawn inflow and prevent the
occurrence of the crossover points during time
progression. It is clear that the porosity has an
apparent effect in controlling the shape of the
inflection-point profiles in the case of high injection
velocities. Consequently, the porosity works to
stabilize the laminar flow and stops the transition to
turbulence. With porosity, varying the injection
velocity becomes more effective on the flow than in
the non-porous case. The porosity has a marked
effect on the flow for the whole range of the injection
velocities. However, its effect is much lower for small
suction velocities and almost neglected for higher
suction velocities.

Figure 1d indicates the evolution of Hf  for various
values of the parameter S with K=1 and M=1. The
reduction in Hf, the appearance of the overshoots (as
an effect of K) as well as the suppression of the
crossover points in the case of injection (as an effect
of the porosity M) are shown in the figure. However,
the most interesting result is the reversal of the
direction of the axial flow with time progression up
till the steady state in the case of S=0. The combined
effect of the porosity and the non-Newtonian fluid
characteristics results in closing the two paths for
the axial flow towards the disk and then reverses its
direction.

Figure 2a presents the time development of the
Nusselt number Nu for different values of the suction
or the injection velocities with K=0, M=0 and Pr=0.7.
It is clear that the effect of the fluid injection is to
decrease the heat transfer significantly (and hence the
Nusselt number) by blanketing the surface with fluid
whose temperature is close to Tw. Suction has an
opposite effect on the heat transfer, since fluid at
near-ambient temperature is brought to the
neighborhood of the disk surface. Figure 2b presents
the time development of the Nusselt number Nu for
different values of the suction or the injection
velocities with K=1, M=0 and Pr=0.7. It indicates
that, for all values of suction or injection velocities,
increasing K decreases Nu due to its effect in
decreasing the axial velocity towards the disk. Figure
2c presents the time development of the Nusselt
number Nu for different values of the suction or the
injection velocities with K=0, M=1 and Pr=0.7.
Figure 2c shows that increasing M decreases Nu due
to its effect in restraining the axial flow towards the
disk. Figure 2d presents the time development of the
Nusselt number Nu for different values of the suction
or the injection velocities with K=1, M=1 and Pr=0.7.
Figure 2d indicates the same findings as in Figures 1c
and 1d.



H.A. Attia, M.A.M. Abdeen, N.A. AwadAllah: Time varying rotating disk flow and heat transfer through a porous medium of a non-Newtonian fluid

ENGINEERING MODELLING 24 (2011) 1-4, 1-9 5
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Fig. 2  Time development of the Nusselt number Nu:
(a) K=0, M=0; (b) K=1, M=0; (c) K=0, M=1; (d) K=1, M=1
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Fig. 1  Time development of the axial velocity at infinity Hf :
(a) K=0, M=0; (b) K=1, M=0; (c) K=0, M=1; (d) K=1, M=1
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Figures 3a, 3b, 3c and 3d present the steady state
velocity components and temperature, F, G, H and θ,
respectively, for various values of K and for M=0 and
1. In these figures, S=0 and Pr=0.7. It is clear from
Figure 3a that increasing K increases G for all ζ. Figure
3a shows also the damping effect of the porosity which
results in a reduction in the velocity component G for
all ζ. Figure 3b indicates that, for M=0, increasing the
parameter K decreases F for small and moderate values
of ζ. However, for larger values of ζ a crossover point
that depends on K appears and an increment in K
increases F. Figure 3b presents an interesting effect
for the porosity in the suppression of the crossover
points that appear with the variation of K. Also, it is
shown that the influence of the porosity, for large
values of K, in reversing the direction of the velocity
component F with S=0. The porosity has the effect in
reducing the magnitude of F for all ζ and for various
values of K. Figure 3c shows that increasing the
parameter K or M increases the resistance for the
incoming axial flow and consequently reduces the axial
velocity towards the disk H for all ζ. For large values
of K, due to the reversal of the direction of F which is
the source for H, a resistance is imposed on the axial
flow towards the disk and consequently the direction
of H is reversed. Figure 3d indicates that increasing K
or M increases θ for all ζ due to the effect of K or M in
damping H which prevents bringing the fluid at a near-
ambient temperature towards the surface of the disk.
It is noticed that, for large values of K, the combined
effect of K and M results in the diminishing of the
effect of the term  H /θ ζ∂ ∂  and then leads to a linear
dependence of θ on ζ.

Figure 4a presents the influence of the axial flow at
the surface of the disk on the steady state radial velocity
profile F for the case of suction or injection with K=0
and M=0. It is clear that increasing the suction velocity
leads to a rapid decrease in F while increasing the
injection velocity increases F. Figure 4b presents the
steady state radial velocity profile F for various values
of suction or injection velocities and for K=0.5 and
M=0. A comparison between Figures 4a and 4b shows
that, for the whole range of injection velocities and
small suction velocities, increasing K decreases F for
all ζ. When the suction velocity is large, increasing the
parameter K reverses the direction of F. With K=0.5
increasing the suction velocity leads to an increment in
the magnitude of F for small ζ while decreases its
magnitude as ζ increases which results in the
appearance of crossover points with ζ. The distance
from the disk at which the crossover appears decreases
with increasing the suction velocity. This is due to the
fact that increasing the suction velocity pumps the
reversed flow in the negative radial direction near the
disk and increases its velocity. At greater distances
from the disk, increasing suction helps the axial flow
towards the disk which stops the reversed radial flow
and then decreases its velocity. The influence of the

porosity on the steady state profiles of F is shown in
Figure 4c with K=0 and M=1 and for various values
of the parameter S. The porosity effect is to sustain
the flow in the radial direction for all values of the
suction or injection velocities. However, its effect is
more pronounced in the case of injection more than
that in the case of suction. Figure 4d presents the
steady state radial velocity profile F for various values
of suction or injection velocities and for K=0.5 and
M=1. Increasing the two parameters leads to a great
reduction in F for all values of the injection velocities.
In the case of suction, the parameters K and M result
in reversing the direction of F and increasing its
magnitude for all values of the suction velocity. The
figure also presents the appearance of the crossover
points in F profiles due to changing the parameter S.

Figure 5a presents the influence of the axial flow at
the disk surface on the steady state axial velocity profile
H for the case of suction or injection with K=0 and
M=0. Increasing the suction velocity increases the axial
flow towards the disk for all ζ while the magnitude of
the axial velocity at infinity is larger than that at the disk.
Increasing the injection velocity reduces the axial flow
towards the disk. With increasing injection velocity, the
outflow penetrates to greater distances from the disk
surface. Consequently, the crossover point between the
positive and negative axial velocity is pushed farther
outward in the ζ-direction. It is seen also that the fluid
injection gives rise to the familiar inflection-point profiles,
especially for high values of the injection parameter S.
Then, high injection velocities are expected to destabilize
the laminar flow and lead to transition to turbulence.
Figure 5b shows the steady state axial velocity profile H
for different values of the parameter S with K=1 and
M=0. Increasing the parameter K decreases the axial
flow towards the disk for all values of the parameter S.
In the case of suction, for K=1, the magnitude of the
axial velocity at infinity is smaller than that at the disk.
The crossover points appear in H profiles are pushed
further in the ζ-direction when increasing K. Figure 5c
presents the steady state axial velocity profile H for
various values of the parameter S with K=0 and M=1.
The porosity effect is to sustain the flow in the axial
direction. It leads to a reduction in the axial flow towards
the disk for small suction velocities and its effect
becomes negligible for larger suction velocities. With
injection applied at the disk, the increasing the porosity
parameter decreases the azimuthal and radial flows and,
consequently, the injection stream sustains its axial
motion towards the disk. It is also seen in the figure, the
influence of the porosity in the suppression of the
crossover of the axial component of velocity and then
the reversal of the direction of the axial motion. It is
clear that the porosity has a marked effect in changing
the shape of the inflection-point profiles in the case of
high injection velocities. Consequently, the porosity
works to stabilize the laminar boundary layer and
prevents the transition to turbulence.
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(a) (a)

(b)

(c)

(d)

Fig. 3  Effect of the porosity parameter M and the non-
Newtonian parameter K on the profile of: (a) radial velocity F;
(b) azimuthal velocity G; (c) axial velocity H; (d) temperature

θ (S=0, Pr=0.7)

(b)

(c)

(d)

Fig. 4  The radial velocity profile vs. S:
(a) K=0, M=0; (b) K=0.5, M=0;
(c) K=0, M=1; (d) K=0.5, M=1
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Figure 5d presents the steady state axial velocity
profile H for different values of the parameter S with
K=1 and M=1. Introducing the two parameters K and
M results in the reversal of the direction of the axial
flow for S=0 and in the suppression of the crossover
points of H profiles in the case of injection.

4. CONCLUSIONS

In this paper the time varying flow of a non-
Newtonian fluid induced by a rotating disk with heat
transfer in a porous medium was studied in the
presence of uniform suction and injection. The effect
of the porosity of the medium, the non-Newtonian
fluid characteristics and the uniform suction or
injection velocity on the velocity and temperature
distributions was considered.

It is shown that the porosity results in the
suppression of the crossover points of the axial
component of velocity in the non-porous case with
uniform injection, while the non-Newtonian parameter
K leads to the earlier time appearance of these
crossover points. The parameter K has an interesting
effect on reversing the direction of the axial velocity
at infinity during time even in the case of zero suction
velocity and in the non-porous case. The inclusion of
the porosity, with the non-Newtonian behavior of the
fluid, results in reversing the direction of the axial
velocity for S=0 for all time.

Another interesting result is the effect of the
parameter K in reversing the direction of the radial
velocity for large suction velocities in the non-porous
case. The combined effect of both parameters K and
M has an interesting feature in reversing the direction
of the radial flow for all suction velocities and even in
the case of zero suction velocity.

One more effect for the porosity is to suppress
the crossover occurs in the radial velocity profiles
due to the variation of K. The porosity works to
stabilize the flow while the non-Newtonian fluid
characteristics tend to destabilize the flow.

The porosity has a more pronounced effect on
the flow in the case of injection than suction and its
effect can be neglected for large suction velocities.
On the other hand, the non-Newtonian characteristics
has an apparent effect on the flow for all values of
suction or injection velocities while its effect on the
flow in the case of suction is more pronounced than
the case of injection. Therefore, the two parameters
K and M together have an apparent effect on the flow
for the whole range of the axial velocity at the surface
of the disk.

The non-Newtonian fluid characteristics leads
generally to a reduction in the heat transfer from the
disk for all suction or injection velocities, while the
effect of the porosity on the heat transfer can be
neglected.

(b)

(c)

(d)

Fig. 5  The axial velocity profile vs. S:
(a) K=0, M=0; (b) K=0.5, M=0; (c) K=0, M=1

(a)



H.A. Attia, M.A.M. Abdeen, N.A. AwadAllah: Time varying rotating disk flow and heat transfer through a porous medium of a non-Newtonian fluid

ENGINEERING MODELLING 24 (2011) 1-4, 1-9 9

5. REFERENCES

[1] T. von Karman, Uber laminare und turbulente
reibung, ZAMM, Vol. 1, No. 4, pp. 233-235,
1921.

[2] W.G. Cochran, The flow due to a rotating disk,
Proc. Cambridge Philos. Soc., Vol. 30, No. 3,
pp. 365-375, 1934.

[3] E.R. Benton, On the flow due to a rotating disk,
Fluid Mechanics, Vol. 24, No. 4, pp. 781-800,
1966.

[4] K. Millsaps and K. Pohlhausen, Heat transfer by
laminar flow from a rotating disk, J. of the
Aeronautical Sciences, Vol. 19, pp. 120-126,
1952.

[5] E.M. Sparrow and J.L. Gregg, Mass transfer,
flow and heat transfer about a rotating disk,
ASME J. of Heat Transfer, pp. 294-302, Nov.
1960.

[6] H.A. Attia, Unsteady MHD flow near a rotating
porous disk with uniform suction or injection,
Fluid Dynamics Research, Vol. 23, No. 5, pp. 283-
290, 1998.

VREMENSKO VARIRANJE TE^ENJA IZNAD ROTIRAJU]EG DISKA I PRIJENOSA
TOPLINE KROZ POROZNI MEDIJ NE-NEWTONOVOG FLUIDA

S USISAVANJEM I UBRIZGAVANJEM

SA@ETAK

Prou~avane su vremenske promjene te~enja nestla~ivog, viskoznog, ne-Newtonovog fluida iznad beskona~nog
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ne-Newtonovog fluida te brzina usisavanja i ubrizgavanja na polja brzina i temperature.
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