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SUMMARY
The simulation of MEMS (Micro-Electro-Mechanical-System) containing fluid field could not be well performed

by conventional numerical analysis methods. The micro flow field characteristics can be simulated by using
macromodel including a nonlinear analysis. This paper set up the macromodel of the micromixer of the microfluidic
chip using Krylov subspace projection method. The system functions were assembled through finite element analysis
using COMSOL. We took the flow field-concentration field analysis for micromixer finite element model. The finite
element functions order is reduced by second-order Krylov subspace projection method based on Lanczos algorithm.
It can be shown that the simulation results obtained by using the macromodel are highly consistent with the results of
finite element analysis. The calculation using the macromodel is two orders of magnitude faster than the calculation
performed by the finite element analysis method. This macromodel should facilitate the design of microfluidic
devices with sophisticated channel networks.

Key words: macromodel, Krylov subspace, micromixer, MEMS.

UDC 517.9:532.5:519.61
Original scientific paper

Received: 12.12.2012.

Nonlinear macromodel based on
Krylov subspace for micromixer of

the microfluidic chip
Xueye Chen(1), Hong Zeng(1), Hongxiang Wang(1) and Jingliang Li(2)

(1)Faculty of Mechanical Engineering and Automation, Liaoning University of Technology, Jinzhou 121001, CHINA
e-mail: xueye_chen@126.com

(2)The Key Laboratory for Micro/Nano Technology and System of Liaoning Province,
Dalian University of Technology, Dalian 116024, CHINA

1. INTRODUCTION

Considerable effort has been put to the development
of microfluidic systems for performing biological and
biochemical mixing [1, 2]. Micromixers, an important
branch of MEMS (Micro-Electro-Mechanical-System),
have as complex a structure and physics field as other
MEMS. The development of technologies in the field
of Microsystems has generated a wideswpread interest
in exploring fast and accurate design methods to
simulate entire systems. The typical MEMS can
complete many tasks under certain conditions. Multi-
physics fields in MEMS make it difficult to design
structure especially if these contain a flow field. In
MEMS, the coupled effect commonly takes place
among mechanical, electrical, fluidic, magnetic and
thermal fields [3-6]. The strongly nonlinear effect is
usually intractable [7]. In order to design MEMS, finite

element and finite volume methods have been
successfully applied. These numerical methods are
highly effective and accurate but laborious and time
consuming, i.e. a solution of three-dimensions Joule
heating dispersion by using the finite element method
can cost four days and four GB of physical memory
[8]. Such computational cost is prohibitive for system-
level design of complex microfluidic chips system.
Furthermore, when the designed system contains
conversion of different signals, such as of non-electric
signals to electric signals or other signal processing
units, the finite element or finite volume methods are
powerless. In order to solve these mentioned problems,
the macromodel technologies have been widely
investigated in the past few years [9, 10].

The macromodel, also called the reduced order
model, is a low-order behavioural representation of a
device. The macromodel can be described with
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hardware language and directly applied to EDA
(Electronic Design Automation) environment.
Analytical solution [11] and numerical solution [12] are
two methods for creating the macromodel. The matrix
subspace projection based on matrix transformation is
a common numerical method for extracting
macromodel from the finite element analysis.

In this work, Lanczos algorithm is applied in setting
up the second-order Krylov subspace. We have directly
projected a large-scale sparse matrix to the subspace.
The algorithm has been tested on the model of the
micromixer of the microfluidic chip. The results
obtained by the macromodel, when compared with the
results obtained by applying the finite element method
to the micromixer of the microfluidic chip, shows that
the model is completly accurate.

2. THEORETICALY BACKGROUND

The static and dynamic behaviours of MEMS is
presented by partial differential equations (PDEs) and
corresponding boundary conditions. Discretization
using finite element method, finite volume method or
finite difference method can transfer PDEs to ordinary
differential equations (ODEs), which can be written in
the following state-space form:

( t ) ( t ) ( t )
:

( t ) ( t )
= ⋅ + ⋅⎧
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where, A∈Rm×m is the system matrix, B∈Rm×n is input
matrix, C∈Rq×m is output matrix, u∈Rn is input
variable. y∈Rq is output variable and x∈Rm is state
variable. We replace x=V⋅z, V∈Rm×r, z∈Rr. The
dimensionless column vectors of transition matrix V,
whose number is r, can compose a basis subspace,
called projection subspace. If r<<m, then the r-
dimensional vector z can be considered as the
reduced order state variable. The reduced order state
function is:
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where, -1ˆ =A V AV , -1ˆ =Β V B , ˆ =C CV .
Performing a Laplace transform for Eq. (1), we can
obtain its frequency domain transfer function H(s) by:

1 1 1( s ) ( s ) ( s )− − −= ⋅ − ⋅ = − ⋅ −H C I B C A I A BΑ (3)

Finding a suitable transition matrix V is the key of
matrix subspace projection method for the reduction
of the original system order. In order to apply Eq. (2)
to reduce the order of Eq. (1), ˆmin −y y  and

ˆmin ( s ) ( s )−H H  in time and frequency domain,
respectively, must be satisfied.

An r-dimension Krylov subspace ϕϕϕϕϕr is defined as
follows:

{ }r 1
r 1 1 1 1 1 1 1( , ) span , , −=φ A b b A b A b (4)

where, A1∈Rm×m, b1∈Rm is called starting vector.
Lanczos algorithm [13] can convert large linear

equations to tri-diagonal equations and create the
orthonormal vectors, makig it possible to construct the
unit basic Krylov subspace. The Lanczos process is
represented with the chart given in Figure 1.

Fig. 1  The flow chart of Lanczos algorithm

The tri-diagonal process is in fact a similarity
transformation, and can be expressed by:

-1
n n n=V AV T (5)

We can simplify Eq. (3) to:
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where i∈Rn is the first standard orthogonal basis in
orthogonal basis set T

i jw v 0, i j⋅ = ≠ . So, we can
obtain the moment of the transition function of initial
system, 1 T i

i 1 n 1m i i−= − ⋅ ⋅A B T . The transition function
of the reduced system becomes:

T T 1
r 1 r 1( s ) i ( s ) i− −= − ⋅H A B I T (7)

where Tr, is the first r×r sub-matrix of Tn, and i1∈Rr

is the first standard orthogonal basis.
If the transition matrix V, obtained from Lanczos

process is a unit basic Kyle subspace [14], and the
first r moments between H(s) and ˆ ( s )H  are matching
then we can obtain the minimum of s sˆ( ) ( )−H H .
Therefore, the original system function matrix can be
projected to Krylov subspace and the order can be
reduced.
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In many engineering problems, second order
differential functions are used for describing the
dynamical behaviour of a system, as below:

T

( t ) ( t ) ( t ) ( t )

( t ) ( t )
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⎨

=⎪⎩

Mx Ex Kx Bu

y C x (8)

where, M, E, K∈Rm×m, B∈Rm×n, C∈Rq×m, u∈Rn ,
y∈Rq and x∈Rm. The second order Krylov subspace
can be defined by:

{ }r 1 2 1 0 1 r 1( , , ) span , , −=φ A A b k k k (9)
where, k0=b1, k1=A1b1, ki=A1ki-1+A2ki-2, and
A1A2∈Rm×m, b1∈Rm. b1 is called the starting vector
and ki is called the basic vector. The preconditioned
Lanczos process [15] can be used for creating the
second order Krylov subspace, which is, in turn, used
to project the dynamic behaviour of a system. As for
the projection x=Gxr, G∈Rm×r, r<<m, if one
P∈Rm×r=G, the first r moments of the original second
order system and the reduced order model can match
and we obtain the following reduced system:
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3. MICROMIXER FINITE ELEMENT
MODEL

Micromixer is one of the important components in
Micro Total Analysis System and Lab on a Chip. Rapid
mixing is essential in many of the microfluidic systems
used in biochemical analysis, drug delivery and
sequencing or synthesis of nucleic acids. The
investigation of micromixers is fundamental to
understanding transport phenomena on the microscale.
The micromixer fabricated in our laboratory is shown in
Figure 2. The outside measurements of the chip are 50
mm (lenght) × 25 mm (width). The width of the micro-
channel is 300 microns and the depth is 30 microns. The
micro-channel was fabricated from a PMMA
(polymethyl methacrylate) substrate by hot embossing,
and sealed with an other PMMA cover plate enclosing
the microchannel. The micromixer can perform mixing
by utilizing the “split and recombine” principle. Since
the thickness of the microchanel is much smaller than
length and width, we consider it as a plane problem and
mesh it with 2D element.

The finite element micromixer model is coupled
with mechanical, fluidic and concentration fields,
therefore, it is a strongly nonlinear problem. The finite
element analysis contains three steps. Firstly, the
incompressible Navier-Stokes equation, Eq. (11), and
continuity equation, Eq. (12), are solved in order to get
the velocity field:

1f
t

µ∆
ρ

∂
+ ⋅∇ = − ∇ +

∂
v v v P v (11)

0∇ ⋅ =v (12)
where, ννννν is the velocity vector, f is the body force, ρ is
the density of the fluid, P is the pressure and µ is the
dynamic viscosity of the fluid. Secondly, the
concentration distribution can be calculated from
convection–diffusion equation, Eq. (13), after obtaining
the velocity field:

2( ) D
t
φ φ φ∂
+ ⋅∇ = ∇

∂
v (13)

where, φ is the concentration of species, D is the
diffusion coefficient and ν is the fluid velocity. Then,
the concentration can be used for investigating the
degree of fluid mixing by equation:
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where, W is the width of the micro-channel, φ is the
concentration of species across the width of the mixing
channel, φ0 and φ∞ are the sample concentration
profiles with completely unmixed (0 or 1) and
completely mixed states (0.5), respectively.

The finite element model of the micromixer is set
up using COMSOL software. The mesh model is
shown in Figure 3. The number of elements and nodes
are 3936 and 5095 respectively.

Fig. 2  The structure of the micromixer

Fig. 3  The finite element model of the micromixer

We have solved the coupling problem by using
COMSOL's sequential coupling. The coupling in the
matrix equation is shown as:
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(15)
where, u and ϕϕϕϕϕ are velocity and concentration degrees
of freedom, respectively. The system matrices M, K,
Dϕ and Kϕ are assembled following a standard finite
element methodology. Matrices DUϕ and KUϕ represent
the coupled effect attribute. COMSOL has solved these
nonlinear equations using CG solver based on AMG.
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4. MACROMODEL EXTRACTION FOR
MICROMIXER

The COMSOL software was used to conduct finite
element simulation for the micromixer and some
characteristic parameters are set up and presented in
Table 1.
Table 1. Finite element simulation parameters

5. CONCLUSIONS

A macromodel is presented and successfully
calculated for the microfluidic chip micromixer. It has
been proved that the macromodel based on Kyle
subspace is an effective method for the MEMS
simulation. The strongly coupled nonlinear microfluidic
problems can be solved by the use of the macromodel
method in combination with the finite element analysis.
In the future, the macromodel method based on Kyle
subspace will have a great potential in the design and
simulation of microfluidic analysis systems.
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PRIKAZ NELINEARNOG MAKROMODELA TEMELJENOG NA KRYLOVLJEVOM
POTPROSTORU PRIKLADNOG ZA SIMULACIJU RADA MIKROMIKSERA

MIKROFLUIDNOG PROCESORA

SA@ETAK

U ovome se radu polazi od pretpostavke da konvencionalne metode numeri~ke analize nisu dostatne za simulaciju
mikro-elektro-mehani~kog-sustava (MEMS) koji sadr`i polje fluida. Me|utim, korištenjem makromodela s primjenom
nelinearne analize mogu se simulirati karakteristike mikro-polja toka. U ovome su radu prikazane postavke
makromodela mikromiksera mikrofluidnog procesora pri ~emu je korištena Krylovljeva metoda projiciranja
potprostora. Funkcije sustava dobivene su metodom kona~nih elemenata uz korištenje softvera COMSOL. Za
diskretizirani model mikromiksera uzeta je analiza polja koncentracije. Red funkcije kona~nih elemenata reduciran
je pomo}u Krylovljeve metode projekcije potprostora drugog reda bazirane na Lanczosovom algoritmu. Pokazano je
da se rezultati dobiveni korištenjem makromodela podudaraju s rezultatima dobivenim analizom s primjenom kona~nih
elemenata, s tim da je vrijeme trajanja simulacije pri korištenju makromodela stotinu puta kra}e od vremena trajanja
simulacije korištenjem metode kona~nih elemenata. U prakti~noj primjeni, ovaj bi makromodel trebao olakšati
dizajniranje mikrofluidnih naprava sa sofisticiranom mre`om kanala.

Klju~ne rije~i: makromodel, Krylovljev potprostor, mikromikser, mikro-elektro-mehani~ki sustavi (MEMS).


