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SUMMARY
This paper determines the optimal common production cycle time for a multi-item finite production rate (FPR)

model with rework and multi-shipment policy. The classic FPR model considers production planning for a single
product with perfect quality production and a continuous issuing policy. However, in real life production
environments, vendors often plan to produce multiple products in turn on a single machine in order to maximize the
machine utilization. Also, due to various uncontrollable factors, generation of nonconforming items in any given
production run is inevitable. It is also common for vendors to adopt multiple/periodic delivery policy for distributing
their finished goods to customers. In this study, it is assumed that all nonconforming items can be reworked and
repaired in the same cycle when regular production ends at additional cost per each reworked item. Our objective is
to determine the optimal common production cycle time that minimizes the long-run average cost per unit time and
to study the effect of rework on the optimal common cycle time for such a specific multi-item FPR model with
rework and multi-shipment policy. Mathematical modeling is used, and the expected system cost for the proposed
model is derived and proved to be convex. Finally, a closed-form optimal cycle time is obtained. A numerical
example and sensitivity analysis is provided to show the practical use of our obtained results.
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1. INTRODUCTION

The classic finite production rate (FPR) model [1-
3] considers production planning for a single product
with perfect quality production and a continuous
issuing policy. However, in real life production
environments, vendors often plan to produce multiple
products in turn on a single machine in order to
maximize the machine utilization. Bergstrom and Smith
[4] used the linear decision rules to a multi-item
formulation which solves directly the optimum sales,
production, and inventory levels for individual items in
future periods. They showed that their proposed
formulation can seek a solution to maximize the firm's
profit over the time horizon by applying it to a firm

producing a line of electric motors. Rosenblatt and
Finger [5] considered a problem of multi-item
production in a single facility. The proposed facility
was an electrochemical machining system and the
products were impact sockets of various sizes for
power wrenches. A grouping procedure of the various
items was adopted. A modified version of an existing
algorithm was applied to insure production cycle times
which are multiples of the shortest production cycle
time. Tamura [6] presented an approximation
procedure used to solve a production planning problem
for a multistage production system which produces
many different components and assembles them into
finished products under capacity limitations. A
generalized production planning model was built using
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the mixed-integer programming. The solution
procedure was approximated by a linear programming
method. Different algorithms were developed in detail
for a two-stage production problem. Numerical
example was provided to examine the validity and
efficiency of the proposed algorithms. Studies related
to various aspects of multi-item production planning
and optimization issues have since been extensively
conducted [7-12].

Also, in real life production environments,
generation of defective items in any given production
run is inevitable due to various uncontrollable factors.
Mak [13] developed a mathematical model for an
inventory system in which the number of units of
acceptable quality in a replenishment lot is uncertain
and the demand is partially captive. It was assumed
that the fraction of the demand during the stock-out
period, which can be backordered, is a random variable
whose probability distribution is known. The optimal
replenishment policy was synthesized for such a
system. A numerical example was used to illustrate the
theory. The results indicated that the optimal
replenishment policy is sensitive to the nature of the
demand during the stock-out period. Hariga and Ben-
Daya [14] considered the economic production
quantity problem in the presence of imperfect
processes. The time to shift from the in-control state
to the out-of-control state was assumed to be flexible,
and they provided distribution-based and distribution-
free bounds on the optimal cost. For the exponential
case, they compared the optimal solutions to
approximate solutions proposed in the literature. Many
studies have since been conducted to address different
aspects of imperfect production systems as well as
quality assurance issues in production [15-21]. Another
unrealistic assumption in the classic FPR model is the
continuous inventory issuing policy. In real life;
however, it is common for vendors to adopt multiple
or periodic delivery policy for shipping their finished
goods to customers. Schwarz et al. [22] examined the
fill-rate of one-warehouse N-identical retailer
distribution system. An approximation model was
adopted from a prior study to maximize the system
fill-rate subject to a constraint on the system safety
stock. As a result, properties of the fill-rate policy were
suggested to provide management when looking into
system optimization. Hill [23] studied a model in which
a manufacturing company purchases a raw material,
manufactures a product (at a finite rate) and ships a
fixed quantity of the product to a single customer at
fixed and regular intervals of time, as specified by the
customers. The objective was to determine a
purchasing and production schedule which minimizes
the total cost of purchasing, manufacturing and
stockholding. Additional studies have also been
extensively carried out to address the various aspects
of periodic or multiple deliveries issues [24-31].

The purpose of this study is to determine the

optimal common production cycle time for a multi-
item finite production rate (FPR) model with rework
and multi-shipment policy, and to study the effect of
rework on the optimal common cycle time. For little
attention has been paid to this area, this paper is
intended to bridge the gap.

2. PROBLEM DESCRIPTION AND
MATHEMATICAL MODELLING

This study examines the optimal common
production cycle time for a multi-item finite production
rate model with rework and multi-shipment policy.
Consider there are L products to be made in turn on a
single machine. All items made are screened and the
unit inspection cost is included in the unit production
cost Ci. During the manufacturing process, for each
product i (where i = 1, 2, …, L), there is an xi portion
of nonconforming items being produced randomly at a
rate di. All nonconforming items can be reworked and
repaired at a rate of P2i right after the end of regular
production process in each cycle at an additional cost
CRi. Under the normal operation, the constant
production rate for product i, P1i must satisfy
statement (P1i - di - λi) > 0, where λi is the annual
demand rate for product i, where di can be expressed
as di = xi P1i. Unlike the classic FPR model assumes a
continuous issuing policy to meet the product demand,
this research adopts a multi-shipment policy. We
assume that the finished items for each product i can
only be delivered to customers if the whole production
lot is quality assured at the end of rework process of
each product i. Fixed quantity n installments of the
finished batch are delivered at a fixed interval of time
during delivery time t3i (refer to Figure 1).

Fig. 1  On-hand inventory of perfect quality items for product i
in a common production cycle

Other cost-related parameters used in this study
include: unit holding cost hi, production setup cost Ki,
unit holding cost h1i for each reworked item, the fixed
delivery cost K1i per shipment for product i, and unit
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shipping cost CTi for product i. Additional notation is
listed as follows:

T − common production cycle length, a decision
variable (to be determined),

H1i− maximum level of on-hand inventory for
product i when regular production ends,

H2i− maximum level of on-hand inventory in units
for product i when rework process ends,

t1i − the production uptime for product i in the
proposed system,

t2i − the rework time for product i in the proposed
system,

Qi − production lot size per cycle for product i,
n − number of fixed quantity installments of the

finished batch to be delivered to customers
in each cycle, it is assumed to be a constant
for all products,

tni − a fixed interval of time between each
installment of finished products delivered
during t2i, for product i.

I(t)i − on-hand inventory of perfect quality items
for product i at time t,

ID(t)I − on-hand inventory of defective items for
product i at time t,

TC(Qi) − total production-inventory-delivery costs
per cycle for product i,

E[TCU(Q)] − total expected production-inventory-
delivery costs per unit time for L products in
the proposed system.

E[TCU(T)] − total expected production-
inventory-delivery costs per unit time for L
products in the proposed system using
common production cycle time T as the
decision variable.

The following equations can obtain directly from
Figure 1:

i
1i 2i 3i
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T t t t

λ
= + + = (1)

i 1i
1i

1i 1i i

Q Ht
P P d
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The on-hand inventory of defective items during

production uptime t1 (see Figure 2) and the time
required for reworking the defective items are:

i 1i i id t x Q= (6)

i i
2i

2i

x Q
t

P
= (7)

Fig. 2  On-hand inventory of defective items for product i in a
common production cycle

Total delivery costs for product i (n shipments) in
a cycle are:

1i Ti inK C Q+ (8)
The variable holding costs for finished products

kept by the manufacturer, during the delivery time t3
where n fixed-quantity installments of the finished
batch are delivered to customers at a fixed interval of
time, are as follows (see Appendix A in Ref. [29]):

i 2i 3i
n 1h H t
2n
−⎛ ⎞

⎜ ⎟
⎝ ⎠

(9)

Total production-inventory-delivery cost per cycle
TC(Qi) for L products, consists of the variable
production cost, setup cost, rework cost, fixed and
variable delivery cost, holding cost during production
uptime t1i and rework time t2i, and holding cost for
finished goods kept during the delivery time t3.
Therefore, total TC(Qi) for L products is:
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∑ ∑ (10)

Defective rate x is assumed to be a random variable with a known probability density function. In order to take
the randomness of x into account, the expected values of x can be used in the cost analysis. Substituting all
parameters from equations (1) to (9) into Eq. (10), and with further derivations, the expected E[TCU(Q)] can be
obtained as follows:
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where [ ] i iE T Q / λ= .
By applying Eq. (1), Eq. (11) can be converted into E[TCU(T)] as follows:
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3. DERIVING THE OPTIMAL PRODUCTION CYCLE TIME

The optimal common production cycle time can be obtained by minimizing the expected cost function E[TCU(T)].
Differentiating E[TCU(T)] with respect to T gives first and second derivative as:
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Equation (14) is resulting positive because Ki, n, K1i, and T are all positive. Second derivative of E[TCU(T)] with
respect to T is greater than zero, hence E[TCU(T)] is a convex function for all T different from zero.

3.1 Derivation of T*

The optimal common production cycle time T* can be obtained by setting first derivative of E[TCU(T)] equal to
zero:
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With further derivations one obtains:
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4. NUMERICAL EXAMPLE

Consider that a vendor plans a routine production
schedule to produce five products in turn on a single
machine using a common production cycle policy.
Annual demands λi for five different products are
3000, 3200, 3400, 3600, and 3800 units respectively.
Production rate P1i for each product is 58000, 59000,
60000, 61000, and 62000 units respectively. Random
defective rates xi during production uptime for each
product follow the uniform distribution over the
intervals of [0, 0.05], [0, 010], [0, 0.15], [0, 020], and
[0, 0.25] respectively. All defective items are assumed
to be repairable at the rates P2i of 1800, 2000, 2200,
2400, and 2600 respectively, at additional reworking
costs of $50, $55, $60, $65, and $70 per item. Values
of other parameters are:

Ki = production set up costs are $3800, $3900,
$4000, $4100, and $4200, respectively,

Ci = unit manufacturing costs are $80, $90, $100,
$110, and $120 respectively,

hi = unit holding costs are $10, $15, $20, $25,
and $30 respectively,

h1i = unit holding costs per reworked are $30,
$35, $40, $45, and $50 respectively,

K1i = the fixed delivery costs per shipment are
$1800, $1900, $2000, $2100, and $2200,

CTi= unit transportation costs are $0.1, $0.2, $0.3,
$0.4, and $0.5 respectively,

n = number of shipments per cycle, in this study
it is assumed to be a constant 4.

Applying Eqs. (16) and (12) one obtains optimal
common production cycle time T* = 0.6026 (years)
and total expected production-inventory-delivery costs
per unit time for L products in the proposed system
E[TCU(T*=0.6026)] = $2,008,926. Variation of the
common production cycle time T effects on the system
cost E[TCU(T)] are illustrated in Figure 3. Variation
of average random defective rate effects on the optimal
cycle time T* and on the expected system cost
E[TCU(T*)] are depicted in Figure 4. It should be noted
that as the average random defective rate E[xi]
increases, optimal common production cycle time T*
decreases, while the expected system cost
E[TCU(T*)] increases significantly.

Fig. 3  Variation of the common production cycle time T
effects on the system cost E[TCU(T)]

Fig. 4  Variation of average random defective rate effects on
the optimal cycle time T* and on the expected

system cost E[TCU(T*)]

5. CONCLUDING REMARKS

The classic FPR model considers production lot
sizing for a single product with perfect production and
a continuous inventory issuing policy. However, in real
life manufacturing environment, vendors often plan to
produce multiple products in turn on a single machine
in order to maximize the machine utilization. During
the production process, various uncontrollable factors
make it likely that some nonconforming items are
produced. Also, the delivery of finished products to
outside clients is commonly under a practical periodic
multiple shipments plan. Therefore, it is important for
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management to be able to know the effects of the
reworking of defective items and multi-shipment policy
on the multi-item FPR system.

This paper determines the optimal common
production cycle time for the aforementioned FPR
system and studies effects of rework on the optimal
cycle time and on the expected system cost. The
obtained results are intended to assist management in
practice to better plan and control such a realistic multi-
item production system. In future research, one
interesting topic would be to consider imperfect rework
effects on the common production cycle time for the
same model.
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OPTIMALNO TRAJANJE PROIZVODNOG CIKLUSA ZA MODEL OGRANIÈENE
PROIZVODNJE VIŠESTRUKIH PROIZVODA S DORADOM I POLITIKOM

VIŠEKRATNE ISPORUKE

SA@ETAK

Ovaj rad definira optimalno trajanje zajedni~kog proizvodnog ciklusa za model ograni~ene proizvodnje  (FPR)
višestrukih proizvoda s doradom i politikom višekratne isporuke. Klasi~an FPR model pretpostavlja planiranje
proizvodnje jednog proizvoda uz savršenu kvalitetu proizvodnje i politiku kontinuirane isporuke proizvoda. Meðutim,
u stvarnoj proizvodnji, prodava~i ~esto planiraju naizmjeni~nu proizvodnju višestrukih proizvoda na istom stroju
kako bi maksimizirali iskorištenje stroja. Osim toga, pojava ošteæenih proizvoda za vrijeme bilo kojeg proizvodnog
ciklusa je neizbje`na uslijed razli~itih ~imbenika koji se ne mogu kontrolirati; stoga je uobi~ajeno da prodava~
usvoji politiku višekratne/periodi~ne isporuke za distribuiranje dovršenih proizvoda kupcima. U ovoj studiji se
pretpostavlja da }e se svi ošte}eni proizvodi doraditi i popraviti nakon završetka redovne proizvodnja u istom
proizvodnom ciklusu, po dodatnoj cijeni za svaki popravljeni proizvod. Cilj je bio definirati optimalno trajanje
zajedni~kog proizvodnog ciklusa koje minimizira dugoro~ni prosje~ni trošak po jedinici vremena te analizirati
u~inak dorade proizvoda na optimalno trajanje zajedni~kog proizvodnog ciklusa za model ograni~ene proizvodnje
(FPR) višestrukih proizvoda s popravcima i politikom višekratne isporuke. Korišteno je matemati~ko modeliranje, a
dobiven je o~ekivani trošak sustava te je dokazana njegova konveksnost. Kona~no, postignut je zatvoreni oblik
optimalnog trajanja ciklusa. Prikazan je i numeri~ki primjer te analiza osjetljivosti kako bi se demonstrirala
prakti~na primjena dobivenih rezultata.

Klju~ne rije~i: proizvodnja višestrukih proizvoda, ograni~ena proizvodnja (FPR), trajanje zajedni~kog ciklusa,
dorada proizvoda, optimizacija, višekratna isporuka.
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