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SUMMARY
On the basis of experimental testing of behaviour of concrete, reinforced concrete and prestressed concrete

structures, various phenomena were observed; in the first place, highly non-linear and inelastic behaviour of
concrete. Since it is hard to include all the phenomena and changes that occur in concrete, a large number of
numerical models for concrete were developed to describe different states of the problem under consideration, with
the tendency to include in these analyses the changes that are dominant in the observed problem. This paper will
give a brief overview of some characteristic numerical models for concrete, developed so far, with a short overview
of their advantages and disadvantages, i.e. possibilities and limitations. The models were classified depending on
the formulation of the constitutive laws. Models were chosen to demonstrate the diversity of modelling and specifics
of their application.
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1. INTRODUCTION

On the basis of experimental testing of behaviour
of concrete, reinforced concrete and prestressed
concrete structures, various phenomena were observed;
namely: non-linear and non-elastic behaviour of
concrete and reinforcement; concrete damages that
cause degradation of the linear-elastic constants in the
material matrix; non-linear behaviour of concrete and
reinforcement when limit stress is exceeded; multi-
axial and non-uniform strain distribution which induces
the development of cracks in concrete; concrete and
reinforcement interaction; hardening of non-cracked
concrete between the two adjacent cracks due to tensile
stresses; different yield point when a reinforcement
incorporated in concrete is analyzed compared to the
one when reinforcement is analyzed separately. When

developing computer programmes for the analyses and
computation of reinforced concrete and prestressed
concrete structures, a mathematical model shall be
devised, which will include as many of these impacts,
and implemented in a computer programme to get the
most faithful response of the structure to the applied
load. Since it is hard to incorporate all the changes that
occur in concrete, a large number of numerical models
for concrete have been developed to describe various
situations, with the tendency to include in these
analyses the changes that are dominant in the observed
problem [1-3].

In this sense, this paper gives a brief overview of
the some characteristic numerical models for concrete,
with a short overview of their advantages and
disadvantages, i.e. possibilities and limitations.
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2. CLASSIFICATION OF THE NUMERICAL
MODELS FOR CONCRETE

Depending on the observation level, concrete
shows different physical and geometrical properties.
The observed size scales for concrete can be typically
subdivided into hierarchical levels: atomic level,
micro-level, meso-level and macro-level (see Fig. 1
according to Ref. [4]). So, the main task is to create
such numerical model which will describe concrete
adequately on the observed or prescribed level.

Considering material modelling on the micro- and
macro-level the numerical models of concrete can be
divided into two large groups:
1. Models of concrete which are matemathically

formulated by using stress and strain invariants
creating constitutive laws connecting strain tensor
and stress tensor on the macro-level. Depending on
the type of these relations, they can be divided into
few large groups incorporating more precise
divisions. These are:
∗ models based on the theory of elasticity,
∗ models based on the theory of elasto-plasticity

and/or theory of plasticity, which can be single-
surface or multi-surface,

∗ endocrone models,
∗ damage models,
∗ models based on the theory of fracture

mechanics.
2. Models of concrete where the relationship between

components of the stresses and components of the
strains is created on the micro-level afterwards
connected on the macro-level into stress tensor by
using principle of wirtual work.

2.1 Surface plasticity models

The need for more realistic description of the
concrete initiate the development of large number of
models which gives the broad spectrum of answers in
describing the behaviour of this heterogeneous
material under different loading conditions. These

behaviours under different stress states are suitable to
follow in characteristic plane or planes. This is the
reason why this group of models get name surface
models. Some of them will be shown in this paper.

2.1.1 Single-surface plasticity models

Etse and Willam [5, 6] develop an isotropic
plasticity model which can be considered to be the
basic single-surface plasticity model of concrete. The
loading surfaces are described as:
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where p, r and θ are invariants of the stress tensor, and
fcu is the uniaxial compressive strength of the concrete.
Function g(θ) defines the deviatoric shape of the yield
surface. The parameter k, i.e. the normalized strength
variable, controls the pre-peak behaviour of the
concrete while the cohesion parameter c controls the
post-peak behaviour of the concrete. The parameter m
is called frictional parameter and defines the shape of
the yield surface in the meridian plane of the softening
regime. Variables which define hardening and
softening are introduced in dependence on ultimate
stress. The evolution of the loading surfaces in the pre-
peak regime is shown in Figure 2.
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Fig. 1  Scale levels for concrete constitutive modelling [4]

Fig. 2  Etse-Willam model
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Extended Leon Model (ELM) [5, 6] is de facto
extended Etse-William model. It belongs to the group
of single-surface plasticity models. The loading
surfaces are described as:
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having in mind that cy hhq f q= −  and tu ssq f q= −

where: p is the hydrostatic pressure, r is the radius of
the deviatoric plane, θ is the Lode angle, fcy is the
elastic limit of concrete under compression loading,
while fcu and ftu are uniaxial compressive and uniaxial
tensile strength of the concrete.

Figure 3 shows loading surfaces in the principal
stress space for different loading states and in the pre-
peak and post-peak regimes in the deviatoric planes.
The deviatoric shape of the loading surface is described
by the elliptic function g(θ,e) [7] where e is the
parameter of eccentricity describing transformation of
the loading surface from circular (e=1.0) to almost
triangular (e=0.5) shape.

Extended Leon model incorporates parameters qh
and qs (Figure 3) which controls hardening and
softening behaviour of the concrete. Adequate
functions include two internal variables αh and αs by
which material behaviour is traced.

2.1.2 Multi-surface plasticity models

In the multi-surface plasticity models [8] at least
two loading surfaces are defined, i.e. one for the

description of the failure criterion when concrete is
exposed to the compression stresses and one for the
description of the crack development.

One of the most popular multi-surface plasticity
models, because of its simple formulation, is a
combination of the Drucker-Prager and Rankine
models. It consists of a Drucker-Prager (DP) yield
surface for the description of concrete subjected to
compressive loading and Rankine (RK) surfaces for
the description of the tensile behaviour of concrete. As
Drucker-Prager criterion is calibrated by means of
uniaxial and a biaxial compression tests a great number
of modifications are proposed accounting for the
influence of confinement on the hardening/softening
behaviour, i.e. for describing the behaviour of the
concrete in different compression-tension regions. In
the Westergard space a maximum tensile stress
criterion (Rankine criterion), within the framework of
the smeared cracks, is used to determine the tensile
strength of concrete for triaxial states of cracks:

RK ,A A RK A RKf ( ,q ) qσ σ= −

with: RK tu RKq f q= − (3)

Index A = 1, 2, 3 denotes axis of principal stresses,
RKq is uniaxial tensile stress, and qRK is an isotropic

stress-like internal variable. Ductility of the concrete
exposed to the triaxial compression is described by the
Drucker-Prager function expressed in the invariant
formulation as:

( ) DP
DP DP 2 DP 1

DP

qf ,q J k Iσ
β
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with: DP cy DPq f q= −
(4)

where fcy represents the elastic limit of concrete, while
parameters kDP and βDP are obtained from the peak
strengths of uniaxial (fcu) and biaxial (fcb) loading. For
relation fcb / fcu = 1.16, the parameters kDP and βDP
have values kDP = -0.07 and βDP = 1.97 [9].

Fig. 3  Extended Leon model (according to Ref. [2])
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The strain-like internal variables αDP and αRK have
been introduced to describe micro-structural changes of
concrete, i.e. hardening and softening of concrete, as:
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The flow rule for the evolution of the plastic strain
tensor εp is given by:
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Decrease of the tensile strength, i.e. softening
behaviour of concrete, is accounted for by an
exponential law, as:

rk rk ,u/
RK tuq f eα α= (7)

A model similar to the previous one is a
combination of the Drucker-Prager model and
“Tension Cut-of” criterion. It consists of a Drucker-
Prager (DP) yield surface for the description of
concrete subjected to compressive loading and
“Tension Cut-of” criterion (TC) for the description of
the tensile behaviour of concrete. As “Tension Cut-of”
criterion can be considered as a restriction of the
Rankine criterion the same mathematical description
can be used with the substitutions in the tensile stress
criterion as:
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The parameter α is now defined according to
TC
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, while the flow rule for the evolution

of the plastic strain tensor εp is now given as:
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As can be concluded from the beforementioned
discussions, for describing the behaviour of concrete
in different stress states, i.e. in different planes, these
models requires the knowledge of some material and
model parameters which are obtained by experimental
testing. These parameters are shown in Table 1.

Model Gali}-Marovi} or Modified Mohr-Coulomb
– Rankine model is multi-surface plasticity model
(Figure 4) where nonlinear behaviour of concrete is
described by a new elastoplastic modified material
model which is based on the Mohr-Coulomb law for
dominant compression stresses and the Rankine law
for dominant tensile stresses [2, 10] and with two
different functions for describing hardening and
softening of concrete. Nonlinear triaxial behaviour of
concrete is involved in this model, including all
dominant influences in concrete such as yielding in
compression, cracking in tension, softening and
hardening of concrete.

Fig. 4  Multi-surface presentation of model for concret
(a) Three-dimensional presentation, (b) Presentation in the

deviatoric plane for compression influences

The behaviour of concrete under dominant tensile
stresses is described by the modified Rankine material
law (Figure 5). Some modifications have been
performed with the cracking criterion and with the
tensile strength reduction when the dominant tensile
stresses appear in the combination with compressive
stresses. The model includes functions for describing
the tensile softening of cracked concrete. The obtained
data from the performed experiments show that some
part of the shear stresses is transferred across the cracks
due to the influence of reinforcement bars and
aggregate interlocking. So, in the presented model
these influences are taken into account by the reduction
of the shear modulus.

Material parameters Model parameters 

Modulus of 
elasticity, E 

Elastic limit of concrete 
fcy=0.4 fcu 

Poisson ratio, ν 
Biaxial compressive strength  

fcb=1.15 fcu 
Uniaxial tensile 

strength, ftu 
Fracture energy 

Gf
II=50 Gf

I 
Uniaxial compressive 

strength, fcu 
Shear modulus, G 

Strain at maximal uniaxial strength  
εm=0.0022, used for αDP=εm-fcu/E 

Table 1. Basic parameters for defining behaviour of concrete
with plasticity models

(a)

(b)
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Fig. 5  Fracture model for concrete

Nonlinear behaviour of concrete for dominant compression stresses is described by an elastoplastic material
model which is based on the Mohr-Coulomb law. At multi-surface model presentation the yielding surface is
composed of six planes in the area of main stresses defined by the following expressions:

for
for
for
for
for
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Experimental studies have shown that for materials sensitive to hydrostatic pressure in the process of formation
and development of plastic strains, such as concrete, the volume plastic strain is less than the one obtained by a non-
associated flow rule. Hence, the plastic potential function is defined as:

( ) ( ) for1 3 1 3 1 2 3Q sin 2ccosσ σ σ σ ψ ψ σ σ σ= − + + − > > (11)
where ψ is the dilatancy angle by which the yielding function will be improved (Figure 6a). By forming the plastic
potential function, the application of the non-associated flow rule is made possible where the flow vector is defined
as normal to the plastic potential surface Qi. The calculation of the plastic strain increment for a non-associated
flow rule is analogous to the calculation for the associated flow rule.

In the mentioned expressions, the angle of friction is exchanged for the dilatancy angle. As the angle ϕ has to be
changed due to the plastic potential definition it is suitable to describe hardening using cohesion:

forp
1 1 3 1 3 1 2 3f ( ) ( )sin 2c( )cosσ σ σ σ ϕ ε ϕ σ σ σ= − + + − > > (12)

In this equation, c is the function of equivalent accumulated plastic strains obtained from a uniaxial test and can
be expressed as:
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2cos

ϕε σ ε
ϕ

−
=

where the relation between σ and pε  was proposed by Meschke [11] and is given as:
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where c
pε is the value of c

pε at σ=σy, and cy is
cohesion on the initial yield surface that bounds the
initial elastic response, Figure 6b.

The softening law is controlled by the function for
uniaxial compression which was originally proposed
by Gysel and Taerwe [12] in the form:

22p
p 1

2
c 2

n 1( ) f ( ) 1
n 1

σ ε ε
σ

−
⎡ ⎤⎛ ⎞−⎢ ⎥= = + ⎜ ⎟−⎢ ⎥⎝ ⎠⎣ ⎦

(14)

where p p
1 cn /ε ε=  and p p

2 c cn ( t ) /ε ε= + .
Parameter t controls the slope of the softening function.
The complete elastic, hardening and softening
functions of concrete with respect to the total plastic
strains are presented in Figure 6c.

Advantages of this model are: a multi-surface
presentation is implemented which permits the rapid
convergence of the mathematical procedure; all
influences are described by the elementary parameters
for material which can be obtained by a standard
uniaxial test so that the very complex behaviour of
reinforced concrete structures can be described simply
and effectively but with a sufficiently accurate model
including all dominant influences in concrete such as
yielding in compression, cracking in tension, softening
and hardening of concrete.

Generally, multi-surface models are adequate for
describing the reinforced concrete cross-sections i.e.
reinforced concrete structures, especially in the
situations when the overstep of allowable stresses, i.e.
reaching the ultimate strength, and the collapse of the
cross-section occur over reinforcement.

2.2 Damage models

Voyiadjis - Abu-Lebdch model [7] (Figure 7)
introduces two criteria: the bounding surface FVA and
the loading surface fVA, which are described as follows:

( ) ( )VA 2 2 1F ,D aJ J bI g D 0σ λ= + + − = -
bounding surface

( ) ( )2 2
VA 2 2 1f ,D aJ k J k bI k g D 0σ λ= + + − = -

loading surface (15)

where D  is the damage parameter, ( )g D  is the
function of acumulated damage, J2 is the invariant of
deviatoric part of stress tenzor, I1 is the first invariant
of the stress tenzor, parameters a, b and λ are constants
[7], while k is the shape coefficient. Acumulated
damage is described by a tensile (Dt) and a
compressive (Dc) damage parameters with two
different damage loading surfaces up to the total
failure. This model is useful for describing the
behaviour of the structure under cycling loading paths.

(a)

(b)

(c)

Fig. 6  Material model formulation for 3D analysis for
concrete: (a) Graphical presentation of associated and non-
associated flow rules; (b) Hardening and softening functions

with respect to the total plastic strains; (c) Three-axial
presentation of the yielded surface

Fig. 7  Voyiadjis - Abu-Lebdch model [7]
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Burlion model (Figure 8) [2] uses the yield function
according to Needleman and Tvergaard [13] which is
a modification of the yield function proposed by
Gurson [14]. Yield criterion is described as:

( )

( )( )
NT M

22 1
1 2 32

MM

f , , f *

3I I2g f * cosh g 1 g f *
2

σ σ

σσ

=

⎛ ⎞
= + − +⎜ ⎟

⎝ ⎠
(16)

where: I1 and I2 are the first and the second invariant
of the stress tensor, σM is the equivalent yield stress, f*
is the volume fraction of voids, and g1, g2 and g3 are
model parameters. In the model, the variation of the
void volume fraction f* is controlled by the plastic
flow. While f* increases with void development in
tension, it decreases with void closure in compression.
In this model damage growth is associated to the
evolution of porosity and to the evolution of micro-
cracking at the same time (plasticity-damage coupling).
From the algorithmic point of view, an explicit Forward
Euler integration scheme is used for solving the
evolution equations; thus only small step sizes should
be applied.

2.3 Parametric models

Ottosen four-parameter model [16] defines failure
criterion by using all three stress invariants (I1, J2 and
θ) and four parameters (a, b, k1 and k2) what is
mathematically described as:

( )1 2 2 2 1f I ,J , aJ J bI 1 0θ λ= + + − = (18)
where λ is the function of cos 3θ defined as:
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Parameters a, b, k1 and k2 are constants obtained
from standard uniaxial tests for determining tensile
ft’(θ=0°) and compressive fc’(θ=60°) strength, and
interrelationship for the element under biaxial and
triaxial stress state.

The failure surfaces in the deviatoric planes,
described with Eq. (18), are quadratic parabolas which
are convex if a>0 and b>0. These failure surfaces in
the deviatoric planes fulfil conditions of symmetry and
convexity and change the shapes from nearly triangular
to nearly circular depending on the increase of the
hydrostatic pressure. The model encompasses several
known models as special cases for some predefined
values of the a, b and λ. For the case a=b=0 and
λ=konst one can get von-Misses model, and for a=0
and λ=konst one can get Drucker-Prager model, both
with circular failure surfaces.

This four-parameter model is valid for a wide range
of strees combinations. In its mathematical form it is
suitable for the implementation into computer
programmes but demand large number of material
parameters which can be obtained from experimental
investigations only [1].

Hsieh-Ting-Chen four-parameter model (Figure 10)
[17] improve Ottosen four-parameter model by
introducing simpler equation for λ:

( ) forb cos c 60λ θ θ θ= + ≤ (20)
where b and c are constants.

Fig. 8  Burlion model [2]

Kang model [15] uses three functions which define:
hardening, softening and crack development for
defining behaviour of concrete. This can be
mathematically written as:

crack

hard soft

F( , , ) F( , , )
F( , ,k( qh )) F( , ,c( qs ))

ξ ρ θ ξ ρ θ
ξ ρ ξ ρ

= +

+ +

(17)
Figure 9 shows development of the loading

surfaces in deviatoric plane on few levels along
hydrostatic axis.

Fig. 9  Kang model

Shown model is useful for the description and the
analysis of high reinforced concrete columns under
combined longitudinal and transversal loading.

Fig. 10  Hsieh-Ting-Chen four parameter model

Replacing λ in Eq. (19), i.e. failure criterion in
Ottosen four-parameter model, and using Haigh-
Westergard coordinates yields a failure function of the
form [1]:



M. Gali}, P. Marovi}: An overview of some characteristic numerical models for concrete

72 ENGINEERING MODELLING 25 (2012) 1-4, 65-75

( ) ( )2f , , a bcos c d 1 0ξ ρ θ ρ θ ρ ξ= + + + − = (21)

where a, b, c and d are material constants. Noting that

( )1 1cos 3 / 2 I / 6ρ θ σ= −  in the Haigh-
Westergard space, we can rewrite Eq. (21) in the terms
of the stress invariants I1, J2 and J3 with the four new
material constants A, B, C and D as:

2 2 1 1AJ B J C DI 1 0σ+ + + − = (22)
It is interesting to note that functional form of Eq.

(22) appears to be a linear combination of three well-
known failure criteria, namely, the von Mises, the
Drucker-Prager and the Rankine criteria. The material
parameters A, B, C and D are determined by the use of
biaxial tests of Kupfer et al. [18] and of the triaxial
tests of Mills and Zimmerman [19]. They are
determined from four failure states: (i) uniaxial
compressive strength fc’; (ii) uniaxial tensile strength
ft’=0.1 fc’; (iii) equally biaxial compressive strength
fbc’=1.15 fc’; and (iv) stress state (σoct/fc’, τoct/fc’) = (-
1.95, 1.6) on the compressive meridian (θ=60°).
Finally, the values of these four constants are:
A=2.0108, B=0.9714, C=9.1412 and D=0.2312.

Willam-Warnke five-parameter model [20] has
curved tensile and compressive meridians expressed
by quadratic parabolas of the form:

2
m 0 1 t 2 ta a aσ ρ ρ= + + ,

2
m 0 1 t 2 tb b bσ ρ ρ= + +

(23)

where: σm is the mean normal stress obtained from
σm=I1/3, ρt and ρc are the stress components
perpendicular on the hydrostatic axis at planes θ=0°
for tensile stresses and θ=60° for compressive stresses,
respectively, and a0, a1, a2, b0, b1, and b2 are material
constants obtained by using five typical tests for this
kind of analysis.

Stresses σm, ρt and ρc are normalized with uniaxial
compressive strength fc’ and are shown in Figure 11 in
the coordinate system σm / fc’’, ρt / fc’, ρc / fc’.

Willam-Warnke failure curves are convex and
smooth everywhere (Figures 11 and 12) [1]. Due to
the threefold symmetry, it is only necessary to consider
the interval 0 ≤ θ ≤ 60°. The symmetry conditions at
angle θ = 0° and θ = 60° (Figure 12) require that the
position vectors ρt and ρc must be perpendicular to the
ellipse at the points P1(0,b) and P2(m,n), respectively.
To satisfy always the normality condition at point P1
the y-axis have to coincide with the position vector ρt.
The outward normal unit vector to the ellipse at point
P2(m,n) must form an angle of 30° with the x-axis.
Using aforementioned conditions, the half-axes a and
b in terms of the position vectors ρt and ρc can be
determined, and after some algebra, the radius ρ(θ)
can be expressed in terms of parameters ρt and ρc as:

Fig. 11  Willam-Warnke five-parameter model

Fig. 12  Trace of the deviatoric section of the Willam-Warnke
five-parameter failure surface for the interval 0 ≤ θ ≤ 60°

Two limiting cases of Eq. (24) can be observed.
First, for relation ρt/ρc = 1 (or, equivalently, a = b), the
ellipse degenerates into a circle (similar to the deviatoric
trace of the von Mises or Drucker-Prager models).
Second, when ratio ρt/ρc approaches the value 1/2 (or,
equivalently, a/b→∞), the deviatoric trace becomes
nearly triangular (similar to that for the maximum
tensile stress criterion). Therefore, both convexity and
smoothness of the failure curve (Figure 9) can be
assured in the interval 1/2≤ρt/ρc≤1. The five
parameters of the failure function of the Willam-Warnke
five-parameter model are now determined by the
following five failure tests:

* uniaxial compression strength fc’
* uniaxial tensile strength ft’ = 0.1 fc’
* biaxial compressive strength fbc’ = 1.15 fc’
* confined biaxial compression strength with

(σ1>σ2=σ3) where (σmt, ρt)=(-1.95 fc’, 2.77 fc’)
* confined biaxial compression strength with

(σ1=σ2>σ3) where (σmt, ρc)=(-3.9 fc’, 3.461 fc’)

( )
( ) ( ) ( )

( ) ( )

1 / 22 2 2 2 2 2
c c t c t c c t t t c

22 2 2
c t c t

2 cos 2 4 cos 5 4

4 cos 2

ρ ρ ρ θ ρ ρ ρ ρ ρ θ ρ ρ ρ
ρ θ

ρ ρ θ ρ ρ

⎡ ⎤− + − − + −
⎣ ⎦=

− + −
(24)
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2.4 Micro-plane models

In the micro-plane approach, proposed by Ba•ant
et al. [21] what is an improvement of the previously
developed classical micro-plane model, the constitutive
model of concrete is defined by relations between
stresses and strains acting on a plane of arbitrary
orientation the so-called micro-plane (Figure 13).
Every plane is defined with its unit normal vector n,
i.e. with i-th unit normal vector for that micro-plane, ni
= [nxi nyi nzi]T. The model use kinematic constraint,
which defines the strain vector ei on the i-th micro-
plane with unit normal ni as ei=niεεεεε. Finally, the micro-
plane stress vector is connected to the macroscopic
stress tensor by using the principle of virtual work by
the equation:

( ) ( )ij N ij M ij L ij
3 N M L d N

2
Ω

σ σ σ σ Ω
π

= + +∫ (25)

where σN is the normal stress on the micro-plane, σM
and σL are the shear components in a plane normal to
n, and Nij, Mij and Lij are symmetric tensors related to
the direction of the micro-plane. Tensorial stress-strain
laws are then obtained by averaging over all possible
orientations of the micro-plane.

The micro-plane models are certainly the most
detailed and the best to describe the behaviour of
concrete and concrete structures, because these models
analyze this extremely heterogeneous material at the
micro-level linking its behaviour at the macro-level
[22]. However; due to the complexity of the
description, a large number of planes in which the
behaviour is analyzed and the high number of rewuired
parameters; they are not suitable for implementation in
models which discretize the structure by composite
finite elements; namely, they are not suitable for
description of reinforced concrete and prestressed
concrete cross-sections.

3. COMMENTS AND CONCLUSIONS

The need for a more realistic description of
concrete behaviour has led to the development of a
large number of models that provide a wide range of
responses of this heterogeneous material to various
loads and stresses.

This brief overview of some characteristic
numerical models of concrete shows how difficult it is
to form a model that will describe a non-linear
behaviour, include a greater number of impacts arising
from this behaviour, precisely define them
mathematically, and in doing so use the material
parameters that do not require further experimental
investigations.

One can note that all presented models comprise a
large number of parameters (material and model
parameters) that require expensive experimental
investigations, Table 2.
Table 2. Total number of required parameters for different

concrete models

Figure 13. Micro-plane model: (a) discretization with 21 micro
planes; (b) normal and shear strain component on the i-th

micro-palne; (c) shear strain components on the i-th micro-
plane [21]

(a)

(b)

(c)

Constitutive 
model 

Number of 
material 

parameters 

Number of 
model 

parameters 

Total number 
of required 
parameters 

ELM 5 11 16 
DP-RK 5 4  9 

DP-TC 5 4  9 
Ottosen 5 4  9 

Willam-Warnke 5 5  10 
Micro-plane 9 13 22 

It is shown that modelling depends on what changes
and what kind of behaviour is to be observed and
analyzed and at what level (macro or micro).
Regardless of how much the model is accurate and
precise, it might not be a good choice for a problem
that is to be described. If not appropriate model is
selected, different problems may arise: mathematical
(convergence of the procedure), physical (model does
not include the dominant influence that shall be
analyzed), or technical one when we are (still) limited
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by the computer capacity that does not allow micro
analysis in combination with different materials and
composite finite elements. A brief overview of
possibilities and limitations of described models,
recommendations what model to apply in the analysis
of particular problem and difficulties that might be
encountered is given in Table 3.
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The model is to 
describe 

Models based 
on the theory 
of elasticity  

Models based on the theory 
of elasto-plasticity Damage models 

Models based on 
the theory of 
fracture 
mechanics 

Strain history 
Possible if 
hypoelastic 
model is used 

Flow surfaces, hardening / 
softening function and the flow 
vector shall be defined 

Can be used in 
combination with 
some plastic models 

Possible if certain 
material parameters 
are included 

Anisotropic 
behaviour; 
hydrostatic and 
deviator 
responses to be 
included 

Possible if 
hypoelastic 
model is used 

Anisotropic load surface shall be 
defined 

Applicable for 
distibuted  / 
smeared cracks 

It has not been 
tested 

Post-yield stress 
behaviour 

Possible if 
secant stiffness 
modulus is used 

Possible if strain is defined by 
functions on the load surface and 
hardening / softening curve 

Not developed 
enough 

Well describes 
changes under 
dominant tensile 
stresses 

Damages 
(changes of 
elastic constants 
in the stiffness 
matrix) 

The model can 
be used without 
significant 
limitations 

It is not possible to use the model 
based on the classical theory of 
plasticity 

A good description 
for distributed / 
smeared cracks 

Not formulated for 
tension-
compression 
domain 

Behaviour under 
cyclic load 

The model can 
be used without 
limitations 

Possible if it involves elastic 
behaviour at unloading 

It has not been 
used so far for 
description of this 
behaviour 

Possible if it 
involves elastic 
behaviour at 
unloading 

Development of 
cracks 

Possible if 
hypoelastic 
model is used 

Possible if cracks are described 
according to the assumptions of 
anisotropic or orthotropic 
plasticity 

Possible if the 
cracks are well 
distributed 

Mainly used to 
describe discrete 
cracks 

 

Table 3 An overview of described models – possibilities and limitations
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PREGLED NEKIH KARAKTERISTI^NIH NUMERI^KIH MODELA BETONA

SA@ETAK

Na osnovu eksperimentalnih ispitivanja ponašanja betonskih, armiranobetonskih i prednapetih konstrukcija
zapa`ene su razne pojave, u prvom redu, izrazito nelinearno i neelasti~no ponašanje betona. Kako je teško obuhvatiti
sve pojave i promjene koje se javljaju u betonu, razvio se veliki broj numeri~kih modela betona za opisivanje
razli~itih stanja problema, s te`njom da se u tim analizama uklju~e promjene koje su dominantne u promatranom
problemu. U ovom radu dat }e se kratki pregled nekih karakteristi~nih do sada razvijenih numeri~kih modela
betona s kratkim osvrtom na njihove prednosti i nedostatke. Izvršena je podjela tih modela ovisno o na~inu
formuliranja zakona ponašanja. Modeli su odabrani tako da poka`u raznolikost na~ina modeliranja te specifi~nosti
njihove primjene.

Klju~ne rije~i: beton, konstitutivni model betona, numeri~ki model betona, plasti~nost.


