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SUMMARY 

This study examines a delayed differentiation multi-product single-machine finite production rate 

(FPR) model with scrap and a multi-delivery policy. The classic FPR model considers a single 

product, single stage production with all items manufactured being of perfect quality and 

product demand satisfied by a continuous inventory issuing policy. However, in real-life 

production-shipment integrated systems, multi-product production is usually adopted by vendors 

to maximize machine utilization, and generation of scrap items appear to be inevitable with 

uncontrollable factors in production. Further, distribution of finished products is often done 

through a periodic or multi-delivery policy rather than a continuous issuing policy. It is also 

assumed that these multiple products share a common intermediate part. In this situation, the 

producer would often be interested in evaluating a two-stage production scheme with the first 

stage producing common parts for all products and the second stage separately fabricating the 

end products to lower overall production-inventory costs and shorten the replenishment cycle 

time. Redesigning a multi-product FPR system to delay product differentiation to the final stage 

of production has proved to be an effective supply chain strategy from an inventory-reduction 

standpoint. Using mathematical modelling, we derive the optimal replenishment cycle time and 

delivery policy. A numerical example is provided to demonstrate its practical usage and compare 

our result to that obtained from the traditional single-stage multi-product FPR model. 

KEY WORDS: finite production rate model, delayed product differentiation, two-stage 

production, multi-product system, common intermediate part, multi-delivery, 

scrap. 
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1. INTRODUCTION 

The classic FPR model considers single product, single stage production with all items 

manufactured being of perfect quality and the product demand satisfied by a continuous 

inventory issuing policy [1-2]. However, in real-life production-shipment integrated systems, 

multi-product production is usually adopted by the vendors in order to maximize machine 

utilization [3-10]. Gordon and Surkis [3] determined control policies for a multi-item inventory 

environment where items are ordered from a single supplier and the demand for items is 

subject to severe fluctuations. Their model balanced the stock carrying and stock-out costs, a 

simulation procedure was adopted to determine the appropriate value of their inventory 

factor in the model. Lotfi and Chen [4] considered that the multi-item capacitated 

production planning problem consists of scheduling the size and the timing of the 

production for several items over a finite horizon so as to meet known future demand 

without incurring backlogs. Their objective was to minimize the total cost of production, 

holding and resource over the horizon subject to a constraint on total production capacity 

in each period. Ketzenberg et al. [5] developed a heuristic for a common 

production/inventory problem characterized by multiple products, stochastic seasonal 

demand, lost sales, and a constraint on overall production. They proposed a heuristic to 

compare with those in current use as well as optimal solutions under a variety of 

conditions. In testing data using dynamic programming as a benchmark, their heuristic 

resulted either near optimal and superior to existing heuristics. Other studies related to the 

multi-product systems can also be found elsewhere [6-10]. 

When common intermediate part exists in the multi-item production system, producers will be 

interested in evaluating different production schemes, such as redesign of the production 

process as a two-stage system with delay product differentiation in order to lower overall 

production-inventory costs and/or shorten the production run time. The respective literatures 

are as follows [11-18]. Collier [11] developed the relationship between aggregate safety 

stock inventory levels and component part commonality. He used a simulation experiment 

to support the functional form of this relationship in an uncertain operating environment. 

The resulting equations can be used by managers to assess the trade-offs between 

aggregate safety stock levels, service level, and the degree of component part 

standardization. Swaminathan and Tayur [12] stated that in an attempt to reduce cost while 

maintaining good customer service, some of the leading manufacturers in the computer 

industry are delaying product differentiation while managing broader product lines. However, 

they indicated that finding the optimal configurations and inventory levels of the vanilla boxes 

could be a challenging task. Accordingly, they modelled a two-stage integer program with 

recourse. By utilizing structural decomposition of the problem and derivative methods, they 

provided an effective solution procedure. In addition, they compared the performance of the 

vanilla assembly process to make-to-stock and assemble-to-order processes and provided 

managerial insights on the conditions under which one might be better than the others. 

Graman [13] developed a single-period, two-product, order-up-to cost model to aid in setting 

the levels of finished-goods inventory and postponement capacity. Minimum-cost optimal 

solutions to inventory levels and capacity were obtained by solving the derived analytical 

expressions using a non-linear programming formulation. Other works related to the delay 

product differentiation issues may also be referred to [14-18]. 

Due to different uncontrollable factors in production process, generation of defective items is 

inevitable in real-life manufacturing environments. Rosenblatt and Lee [19] proposed an EPQ 
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model that deals with imperfect quality. They assumed that at some random point in time the 

process might shift from an in-control to an out-of-control state, followed by the production of 

a fixed percentage of defective items. Approximate solutions for obtaining an optimal lot size 

were derived accordingly. Jamal et al. [20] examined the optimal production batch size with 

rework process at a single-stage production system. Both cases of rework being completed 

within the same production cycle and rework being done after N cycles are examined. 

Mathematical models for each case were developed, and the optimal batch sizes and total 

system costs were determined. Additional studies have also been carried out to address 

difference issues of imperfect production situations [21-25]. 

Unlike the continuous inventory issuing policy assumed in the classic FPR model, in real 

supply chains environment, the distribution of finished products has often been done by the 

use of periodic or multi-delivery policy rather than a continuous issuing policy. Schwarz [26] 

first examined a one-warehouse N-retailer deterministic production-shipment system with the 

objective of determining the stocking policy which minimizes average system cost per unit 

time over the infinite time horizon. Banerjee [27] developed a joint economic-lot-size model 

for a case where a vendor produces an order for a purchaser on a lot-for-lot basis under 

deterministic condition, with the objective of minimizing the joint total relevant cost. Abdul-

Jalbar et al. [28] studied a multistage distribution/inventory system with a central warehouse 

and N retailers. They assumed that the customer demand arrives at each retailer at a constant 

rate and the retailers replenish their inventories from the warehouse, which in turn orders 

from an outside supplier. It is assumed that shortages are not allowed and lead times are 

negligible. The goal is to determine policies which minimize the overall cost in the system. 

Additional references may also be found elsewhere [29-34]. Motivated by the concept of 

delayed differentiation, this study proposes a multi-product two-stage imperfect production-

shipment system by a single-machine production scheme. From the aforementioned literature 

reviews, one notes that little attention has been paid to the investigation of joint effects of 

delayed product differentiation, multi-delivery policy, and random scrap on the optimal 

replenishment cycle time and shipment policy for this specific multi-product FPR model, hence 

the present study intends to bridge the gap. 

2. PROBLEM DESCRIPTION AND MODELLING 

This study focuses on a delayed differentiation multi-product FPR model with scrap and a 

multi-delivery policy using single-machine production scheme. Description of the proposed 

model is as follows. Consider a production process produces L products in turn on a single 

machine in order to maximize its utilization. In additions, these multiple products share a 

common intermediate part. In this situation, the producer would often be interested in 

evaluating a two-stage production scheme with the first stage producing common parts for all 

products and the second stage separately fabricating the end products to lower overall 

production-inventory costs and shorten the replenishment cycle time. In the first stage, 

common intermediate part is produced at the production rate P1,0, followed by product 

differentiation for L items in the second stage; wherein the customized product i is produced at 

a production rate of P1,i (where i =1, 2, …, L) under common production cycle approach (see 

Figure 1). 
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Fig. 1  On-hand inventory level of perfect quality common intermediate parts and finished products for a 

single production line multi-item two-stage imperfect production system with delayed product 

differentiation 

During production time in each stage, there is xi portion of defective items produced randomly 

at a production rate d1,I; the random defective items produced during a production run in each 

stage are considered to be scrap, and they will be removed in the end of production. The 

constant production rate P1,i is larger than the sum of demand rate λi and production rate of 

defective items d1,i. That is: (P1,i-d1,i-λi)>0 for i=0, 1, 2, …, L or (1-xi-λi/P1,i)>0; where i=0 denote 

the common intermediate part and d1,i=P1,i(xi). Unlike classic EPQ model assuming a continuous 

issuing policy for satisfying demand, this study considers a multi-delivery policy and assumes 

that the delivery of finished items (in the second stage) starts at the end of regular production 

when the whole production lot is quality assured for each product i. Fixed quantity n 

instalments of the finished batch are delivered to the customer, at a fixed interval of time 

during the production downtime t2,i (see Figure 1). 

The cost parameters considered in the proposed model include: production setup cost Ki, unit 

holding cost h1,i, unit production cost Ci, disposal cost per scrap item CS,i, fixed delivery cost K1,i 

per shipment, and delivery cost CT,i per item shipped to customers. Additional notation used is 

listed as follows. 

i = index for customized product number, where i=1, 2, …, L, with i=0 stands for the 

common intermediate part produced in the first stage; 

T = rotation cycle length, one of the decision variables; 

Qi = production lot size for product i in a cycle; 
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t1,i = production uptime for product i in a cycle; 

t2,i = delivery time for product i in a cycle, except when i=0 it enters the product 

differentiation stage; 

tn,i = a fixed interval of time between each instalment of finished items of product i to be 

delivered to its buyer during production downtime t2,i; 

H1,i = maximum level of finished product i in the end of production, except i=0 stands for 

the maximum level of common intermediate part; 

Hi = inventory level of common intermediate part during the production time of product 

i, where i=1, 2, …, L; 

n = the number of fixed quantity instalments of the finished batch to be delivered to 

customers in each cycle, other decision variables; 

I(t)i = on-hand inventory level of perfect quality product i at time t; 

Id(t)I = on-hand inventory level of defective product i at time t, with i=0 stands for the 

inventory level of defective common intermediate parts; 

Ic(t)i = on-hand inventory level of finished product i at time t at the customer’s side; 

h3,i = unit holding cost for stocks stored at the customer’s side; 

h4,i = unit holding cost for safety stocks stored at the producer’s side; 

Ii = the left-over number of finished items of product i in each tn,i, at the customer’s 

side; 

Di = number of finished items of product i to be distributed to the customer in each 

shipment; 
α = completion rate of common intermediate part as compared to the finished product; 

TC(T,n) = total production-inventory-delivery costs per cycle for the proposed model; 

E[TCU(T,n)] = the long-run average costs per unit time for the proposed model. 

The on-hand inventory level of common intermediate parts waiting to be finished during the 

second stage is depicted in Figure 2. The on-hand inventory level of defective item during the 

cycle is illustrated in Figure 3. 

 

Fig. 2  On-hand inventory level of common intermediate parts waiting to be finished during the second 

stage 
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Fig. 3  On-hand inventory level of defective items during the production cycle 

By Figures 1, 2, and 3, the following formulations can be obtained directly: 
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In order to meet the demand of the customized product i during a production cycle, the 

following equations must be satisfied: 
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Formulations in the first stage for production of common intermediate parts begins with 

obtaining requirements for the common product, from Eq. (8) and Figures 1, 2, and 3 we have: 
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The prerequisite assumption of the proposed model is that the production facility should have 

sufficient capacity to produce the items to satisfy the demand for all L customized products (including 

the defective (scrap) items) during the processes. Therefore, the following Eq. must be satisfied: 
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The on-hand inventory of finished customized products at the customer’s side during the cycle 

is depicted in Figure 4. From Figures 1 and 4, one can observe the following: 
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Fig. 4  On-hand inventory of finished customized products at the customer’s side during the production cycle 

2.1 THE PRODUCTION-INVENTORY-DELIVERY RELATED COST IN A PRODUCTION 

CYCLE 

First, the inventory holding cost for the common intermediate part in the first stage waiting to 

be worked on (see Figure 1) is: 

 ( )
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It is noted that the inventory holding cost of the common intermediate part waiting to be 

finished for each product i in the second stage (see Figure 1) is: 
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The inventory holding cost for finished product i waiting to be delivered in the second stage is 

[31]: 
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The inventory holding cost for finished product i kept at customers’ sides during the 

production cycle is [33]: 
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Finally, during a production cycle the total production-inventory-delivery cost for the 

proposed model includes variable production cost, setup cost, disposal cost, and holding costs 

for common intermediate part (in the first stage), all variable production costs, setup costs, 

disposal costs, and holding costs for multiple customized products (in the second stage); the 
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fixed and variable delivery costs, and the holding costs for the stocks kept at customers’ side. 

Therefore, one has TC(T,n) as: 

( )
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By substituting Eqs. (1) to (22) in Eq. (27) and taking the randomness of defective rate during 

production into account, and with further derivation, the long-run average costs per unit time 

for the proposed model E[TCU(T,n)] can be derived as follows: 
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3. OPTIMAL PRODUCTION-SHIPMENT POLICY 

In order to derive the optimal production-shipment policy for the proposed model, we need to 

first prove the convexity of the cost function E[TCU(T, n)]. The Hessian matrix equations [35] 

are employed to verify whether Eq. (30) holds: 
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From Eq. (29), we obtain the following: 
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By substituting Eqs. (32), (34), and (35) in Eq. (30), we obtain: 
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Equation (36) results as positive, because K0, Ki, and T are all positive. Hence, E[TCU(T, n)] is a 

strictly convex function for all T and n different from zero. Therefore, the convexity of E[TCU(T, 

n)] is proved, and there exists a minimum of E[TCU(T, n)]. 

In order to concurrently determine the production-shipment policy for the proposed multi-

product single-machine FPR model, we can solve the linear system of Eqs. (31) and (33) by 

setting these partial derivatives equal to zero. With further derivations we obtain: 
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In a real-life situation, the number of shipments n takes on integer values only. However Eq. 

(38) results in a real number. In order to determine the integer value of n* that minimizes the 

cost function E[TCU(T, n)], two adjacent integers to n must be examined respectively. Let n+ 

denote the smallest integer greater than or equal to n (as derived from Eq.(38)) and n- denote 

the largest integer less than or equal to n – we perform the substitution of n+ and n- 

respectively in Eq. (37), apply the resulting (T, n+) and (T, n-) in Eq. (28), respectively, then 

select the one that gives the minimum value of E[TCU(T, n)] as the optimal production-

shipment policy (T*, n*). 
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4. NUMERICAL EXAMPLE 

In this section, we provide a numerical example to exhibit practical usage of aforementioned 

results. Suppose a producer needs to fabricate five products to meet annual customer demands 

λi of 3000, 3200, 3400, 3600, and 3800 units, respectively. 

On a single stage production basis [31], the annual production rates Pi for these five products 

are 58000, 59000, 60000, 61000, and 62000 units, respectively. The random defective rates xi 

follow the uniform distribution over the intervals of [0, 0.05], [0, 0.10], [0, 0.15], [0, 0.20], and 

[0, 0.25], respectively. Unit scrap costs CS,i are $20, $25, $30, $35, and $40, respectively. Unit 

production costs Ci are $80, $90, $100, $110, and $120, respectively. Unit holding costs h1,i are 

$10, $15, $20, $25, and $30 respectively. Setup costs Ki are $17000, $17500, $18000, $18500, 

and $19000, respectively. The fixed delivery costs per shipment K1i are $1800, $1900, $2000, 

$2100, and $2200. Unit holding costs h3,i in the customers’ end are $70, $75, $80, $85, and $90 

respectively. Unit holding costs for safety stocks h4,i are $10, $15, $20, $25, and $30 

respectively. Unit transportation costs CT,i are $0.1, $0.2, $0.3, $0.4, and $0.5 respectively. 

It is further assumed that they share a common intermediate part, which is about 50% 

completion as compared to the finished products (i.e., α = 0.5), and the common part can be 

produced at a faster annual rate of P1,0 = 120000 units. We further assume that the production 

of common intermediate parts has the unit manufacturing cost C0 = $40, setup cost K0 = $8500, 

unit scrap cost CS,0 = $20, unit holding cost h1,0 = $5, and defective rate = [0, 0.04]. Suppose the 

producer adopts the two-stage single-machine common production cycle time policy instead of 

single-stage production policy, then production rates and cost related parameters in the 

second stage (fabricating the finished products) will be in (linear) proportion to α. Therefore, 

annual production rates P1,i for the finished products in the second stage become 112258, 

116066, 124068, 128276, and 600667 units, respectively. Setup costs Ki become $8500, $9000, 

$9500, $10000, and $10500, respectively. Unit production costs Ci are $40, $50, $60, $70, and 

$80, respectively. The random defective rates xi follow the uniform distribution over the 

intervals of [0, 0.01], [0, 0.06], [0, 0.11], [0, 0.16], and [0, 0.21], respectively. Unit scrap costs CS,i 

are $10, $15, $20, $25, and $30, respectively. 

From equations (9) and (10), we have λ0 = 19961. Applying Eqs. (37), (38), and (28), we obtain 

the optimal number of delivery n* = 3, the optimal common production cycle time T* = 0.4588 

(years), and the long-run average production-inventory-delivery costs per unit time for L 

products in the proposed system E[TCU(T*, n*)] = $2,278,391. 

The behaviour of E[TCU(T, n)] with respect to the number of shipments n per cycle is 

illustrated in Figure 5. 

 

Fig. 5  The behaviour of E[TCU(T, n)] with respect to number of shipments n per cycle 
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Variation of the completion rate (α) of the common intermediate part effects on E[TCU(T, n)] is 

depicted in Figure 6. It is noted that, as the completion rate (α) increases, the expected system 

costs E[TCU(T, n)] decrease significantly. 

From Figure 6 one also notices that the proposed two-stage delayed differentiation multi- 

product FPR model has a significantly lower system cost than that obtained from the single-

stage multi-product FPR model [31]. 

 

Fig. 6  The behaviour of E[TCU(T, n)] with respect to the completion rate (α) of the common intermediate 

part 

Variation of the completion rate (α) of the common intermediate part effects on the optimal 

production cycle time T* is illustrated in Figure 7. It is noted that, as the completion rate (α) 
increases, T* decreases significantly. One also notices that the proposed two-stage delayed 

differentiation multi-product FPR model has significantly shorter production cycle time than 

that obtained from the single-stage multi-product FPR model [31]. 

 

Fig. 7  The behaviour of optimal production cycle time T* with respect to the completion rate (α) of the 

common intermediate part 
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5. CONCLUDING REMARKS 

In real-life production-shipment integrated systems, when a family of multiple products shares 

a common intermediate part, with the aim of reducing total production-inventory delivery 

costs as well as shortening the production cycle time, it is ordinary to consider delayed 

differentiation strategy for such a multi-product FPR system. This study uses mathematical 

modelling to explore a multi-product two-stage imperfect FPR system using a single-machine 

production scheme. 

As a result, we derive a closed-form optimal replenishment cycle time and delivery policy that 

minimizes the long-run average cost per unit time for the proposed model. A numerical 

example is provided to demonstrate its practical usage and compare our result to that 

obtained from the traditional single-stage multi-product FPR model. It is noted that the 

research results enable management to better understand, plan, and control such a real multi-

product FPR system with delayed differentiation. For future study, one interesting topic is to 

consider the effect of dual machines (i.e., one additional machine for fabricating specifically the 

common intermediate parts) on the optimal operating policy. 
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