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SUMMARY 

The paper describes free vibration of Timoshenko beam by using spectral element method. Based 

on the partial differential equation of motion, the dynamic stiffness matrix in the frequency 

domain is formulated. In this case, natural frequencies for simply supported beam are obtained 

for each mode of vibration. In this study, three solutions are presented: (1) the analytical solution, 

(2) the finite element method, and (3) the spectral element method. In the last method, the beam 

is described by one element only, but in finite element modelling, the number of elements varies in 

order to improve the quality of the solution. Numerical results obtained by these three methods 

are collected. The spectral element method displays high performance compared to the finite 

element approach, and is considered as interesting tool in the structural dynamic field. 

KEY WORDS: analytical solution; Euler-Bernoulli beam; finite element method; free vibration; 

spectral element method; spectral stiffness matrix; Timoshenko beam. 

1. INTRODUCTION 

Timoshenko beam theory is one of the classical models. It was invented in 1921 and developed 

in 1922 by Timoshenko. Since this year, it has been a topic of various studies in vibration 

analysis of beam-like structures [1-5]. Until now, the Timoshenko beam theory has already 

been used to analyse vibration of micro and nano-structures [2, 6]. 

Firstly, the Euler-Bernoulli theory applied for bending beams disregards the effect of 

shear deformations. This theory is suitable for slender beams and not for thick or 

deep ones because the transverse shear strains remain null. Since this theory neglects the 

transverse shear deformations, it underestimates deflections and overestimates the natural 

frequencies in case of thick beams, where shear deformation effects are significant. 

The theory of thick beams was extended by Timoshenko so as to take shear deformations into 

account. This effect is very strong in higher vibration modes. The Timoshenko beam theory 

deals with two differential equations of motion in terms of deflection and cross-section 

rotation. The Timoshenko beam theory has come into focus with considerable developments of 

the finite element method and its application in practice [7-9]. 
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The finite element method (FEM) and the spectral finite element method (SFEM) are among 

numerical methods used in various computing of static and dynamic responses of structures. 

In FEM approach, the shape functions are independent of the vibrating frequencies and 

improved results can be obtained with higher number of elements and degrees of freedom. In 

contrast, the SFEM reaches accurate solutions with a few numbers of elements and degrees of 

freedom. 

In this context, the finite element method is largely used to analyse free and forced vibration of 

structures [10-11]. In the other part, Lee and Schultz [12] study free -vibration of Timoshenko 

beams and axi-symmetric Mindlin plates using the pseudo-spectral method. The finite element 

analysis vibration of rotating Timoshenko beams is presented by Rao and Gupta [13]. In 

addition, Katz et al. [14] studied the dynamic behaviour of a rotating shaft subjected to a 

moving load with constant velocity coupling the modal analysis method and an integral 

transformation method. 

Later, Doyle [15] introduced Fourier transform approach to resolve the governing differential 

equation of the spectral Timoshenko beam. It has been used to analyse the dynamic of the 

continuous beam and bridge subjected to a moving load [16]. Thus, this approach is extended 

to study the dynamic of the cracked Timoshenko beam [17]. In this field, Song et al. [18] 

studied the vibration of a beam subjected to a moving force in the frequency-domain. Kumar et 

al. [3] used the spectral element method for wave propagation and structural diagnostic 

analysis of a composite beam with transverse crack. 

In this paper, the formulation using SFEM is devoted to study the vibration of Timoshenko 

beam. By using the concept of the dynamic spectral method, circular frequencies and mode 

shapes of vibration are computed, and a parametric study is established. The results of SFEM 

with respect to FEM display less discretisation of the structure with greater numerical 

accuracy. 

2. MATHEMATICAL FORMULATIONS 

This section describes the formulation of the simply supported Timoshenko beam vibration 

using the finite element method, the spectral element method and the mathematical solution. 

2.1 FINITE ELEMENT METHOD 

The mechanical and geometrical characteristics of a prismatic beam are as follow: length L, 

area Ω, moment of inertia I, Young’s modulus E, shear modulus G and the density ρ (Figure 1). 

The Timoshenko theory accounts for an average transverse shear deformation γ through 

thickness. It also includes rotatory inertia of the cross section but the latter has only a minor 

effect. The effect of transverse shear is much greater than that of rotatory inertia on the 

response of transverse vibration of prismatic bars. In this theory, transverse shear strain 

distribution is assumed to be constant through the beam thickness and thus requires the 

introduction of the shear correction factor K to represent the strain energy of deformation 

[19]. The shear deformation is related to bending slope ∂ ∂v( x ,t ) / x  by: 

 
∂ = +

∂
v( x ,t )

θ( x ,t ) γ( x ,t )
x

 (1) 

v is the transverse displacement of the beam and θ is the cross section rotation. 
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Fig. 1  Geometrical and mechanical characteristics of the used beam 

The expression of strain energy Ue and the kinetic energy Te of bending and shear effects can 

be evaluated, respectively: 

 

2 2

e

L L

1 θ( x ,t ) 1 v( x ,t )
U EI dx KG θ( x ,t ) dx

2 x 2 x
Ω∂ ∂   = + −   ∂ ∂   ∫ ∫  (2) 

 

2L L 22

e 2
0 0

v ( x ,t )1 1 θ( x ,t )
T ρ dx ρI dx

2 2 xx
Ω
 ∂ ∂ = +     ∂ ∂ 

∫ ∫  (3) 

By using interpolation functions of the displacement field and those of the shear deformation, 

the relationship (2) can be expressed as: 

 

{ } { }

{ } [ ] [ ] { }

L T
T θ θ

e e e

0

TL
T v v

e θ θ e

0

dN ( x ) dN ( x )1
U q EI . q dx

2 dx dx

dN ( x ) dN ( x )1
q KG N ( x ) N ( x ) q dx

2 dx dx
Ω

    
 = +        

      + − −      
      

∫

∫
 (4) 

The strain energy expression Eq. (4) leads to the formulation of the stiffness matrix 

components of Timoshenko beam. 

 [ ]    =    
   ∫

L T
θ θ

b

0

dN ( x ) dN ( x )
K EI dx

dx dx
 (5.1) 

 [ ]
L T

v v
s θ θ

0

dN ( x ) dN ( x )
K G K N ( x ) N ( x ) dx

dx dx
Ω    = − −   

   ∫  (5.2) 

The above process can be applied to evaluate the components of the mass matrix, as: 

 [ ] [ ] [ ]
L

T
v v v

0

M ρ N ( x ) N ( x ) dxΩ= ∫  (6) 

 [ ] [ ] [ ]
L

T
θ θ θ

0

M ρI N ( x ) N ( x ) dx= ∫  (7) 

In this case, integrating boundary conditions in Lagrange’s equation can be applied for a 

simply supported beam, which can lead to the formulation of the equation of free –vibration 

(the formulations of stiffness and mass matrices are described in Appendix 1 and 2, 

respectively). The trivial solution of free -vibration of beams is obtained unless. 

 [ ] [ ]2
e eK ω M 0− =  (8) 

where e b sK K K     = +
       and e v θK K K     = +

      . 

	1 
  

 

 
x 

y 

 

q(x) 

z 
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In order to compute natural frequencies of the clamped-free beam, two cases can be 

considered based on the mass hypothesis. 

Case 1: Consistent mass hypothesis 

The solutions of the Eq. (8) are: 

 
Ω

Ω
=

+
c 1 2 2

2 30 ρ EI
ω

ρ L L 10r
 (9.1) 

 
( )

( )c 2 2 2 2

EIρ λ 16 70
ω

ρ L 42r 5 λ 1 L

Ω
Ω

+
=

+ +
 (9.2) 

with r I / Ω=  and 2λ 12EI /( KG L )Ω= . 

Case 2: Lumped mass hypothesis 

In this case, the solution of Eq. (8) is: 

 

2 3 4

l1 2

16 40λ 33λ 10λ λ1 2EI
ω

L(1 λ ) ρ 4 5λ λΩ
+ + + +

=
+ + +

 (10) 

By comparing natural frequencies (9) and (10), the consistent mass hypothesis is required for 

the analysis presenting rotational pulsations of the beam (9). 

2.2 ANALYTICAL METHOD 

2.2.1 EQUATION OF MOTION 

The Figure 2 shows a free body diagram of an extracted element from Timoshenko beam 

where M( x ,t ) is the bending moment, T( x ,t )  is the shear force, Ω ∂2 2ρ ( v( x ,t ) / dt )dx  is the 

inertia force, θ( x ,t ) is the slope of the beam due to bending, 
2 2( θ( x ,t ) / t )ρI dx∂ ∂  is rotatory 

inertia, and q( x )  is the applied loading. 

The equilibrium equation according to the z-axis results in: 

 
2

2

T ( x ,t ) v( x ,t )
ρ q( x ) 0

x t
Ω+ +∂ ∂ =

∂ ∂
 (11) 

 

 

 

 

 

 

 

Fig. 2  Free-body diagram of an element of length dx 
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For the free -vibration approach, external loads are neglected. The Eq. (11) can be written in 

general partial differential equation as: 

 

2 2

22

v( x ,t ) θ( x ,t ) v

xx

( x ,t )
K G ρ 0

t
Ω Ω

 ∂ ∂−  ∂∂ 

∂− =
∂

 (12) 

The balanced bending moment about the centre point of the element is: 

 
2

2

dx ( x ,t )
ρI

2 t

M( x ,t ) T( x ,t )
0

x x

ϕ∂
− −

∂
∂ ∂

=
∂ ∂

 (13) 

The relationship (13) can be written in the following form: 

 

2

2

2

2

θ( x ,t) v( x ,t ) θ( x ,t )
EI KG θ( x ,t ) ρI 0

x tx
Ω∂ ∂ ∂ + − − = ∂ ∂ ∂  (14) 

Using separated variables of iωtv( x ,t ) X ( x )e=  and iωtθ( x ,t ) Y ( x )e= , the system of Eqs. (12) 

and (14) can be written in the following matrix form: 

 

2

2

0

0

KG 0 0 KGX ( x ) X ( x )

Y ( x ) Y ( x )0 EI KG 0

ω ρ 0 X ( x )

Y ( x )0 ω ρI KG

Ω Ω
Ω

Ω

Ω

      
      
      

     +      
     

′′ ′−
+ +

′′ ′

=
−

 (15) 

The functions X(x) and Y(x) are identical, hence, it is possible to put: 

 
αxY( x )

X( x ) Ce
β

= =  (16) 

By substituting Eq. (16) into Eq. (15), we obtain: 

 
Ω Ω Ω

Ω Ω

 + −    
=    

    + − 

2 2

2 2

KG α ω ρ KG α 1 0

β 0KG α EIα ω ρI KG
 (17) 

In order to obtain non-trivial solutions, the determinant of the above matrix must be zero. 

 ( )4 4 2 4 4
F F G 1α α ηα α α η 1 0+ + − =  (18) 

with 

1/ 4

F
ρ

α ω
EI

Ω =  
 

, 

1/ 4

G
ρ

α ω
kG

 =  
 

, 1
I

η
Ω

= , 2
EI

η
kGΩ

= and 1 2η η η= + . 

The four roots of the Eq. (18) are as follows: 

 ( )2 4 2 4F
1 F F G 1 1

α
α i α η α η 4( α η 1)

2
iλ= + − − =  (19.1) 

 2 1
iλα = −

 (19.2) 

 ( )2 4 2 4F
3 F F G 1 2

α
α α η α η 4( α η 1) λ

2
= − + − − =  (19.3) 

 4 2α λ= −  (19.4) 

Spatial solutions are then expressed as: 

 2 2
1 1 2 1 3 4

λ x λ xcos( λ x ) A sin( λ x ) e A eX( x ) A A −+ + +=  (20.1) 
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 2 2
1 1 1 2 2 1 3 3 4 4

λ x λ xcos( λ x ) A sin( λ x ) A e A eY ( x ) β A β β β −+ + +=  (20.2) 

with 
2
G

n n
n

α
β α

α
= +  : n 1,2 ,3 , ....=  

The application of boundary conditions for the simply supported beam ( X( x 0 ,ω ) 0= =  , 

X( x L,ω ) 0= = , X ( x 0 ,ω ) 0′′ = =  and X ( x L,ω ) 0′′ = = ) results in: 

 [ ]
2 2

2 2

L L
1 1

L L
1 1

λ λ

λ λ

1 0 1 1

1 0 1 1
A( λ )

cos( λ ) sin( λ ) e e

cos( λ ) sin( λ ) e e

L
L L

L L

−

−

 
 − =  
 
 − − 

 (21) 

with [ ]
tt

1 2 3 4X( x 0,ω),X''( x 0,ω),X( x L,ω),X''( x L,ω) A( λL) A ,A , A ,A= = = = = . 

For a non-trivial solution of X(x), the determinant of the matrix (21) must be null: 

 1 2) sinh( )8 sin( λ L λ L 0⋅ =  (22) 

Corresponding solutions of the Eq. (22) are valid for: 

 n
nπ

λ
L

=  (23) 

for n 1, 2 , 3 , .....=  

2.3 SPECTRAL ELEMENT METHOD 

The matrix differential Eq. (15) can be solved by using the Fourier transform. The solution is 

considered as the sum of harmonic vibration: 

 

N 1
iω tn

n 0

1
W( x ,ω)e

N
v( x ,t )

−

=
= ∑  (24.1) 

 Φ
−

=
= ∑

N 1
iω tn

n 0

1
θ( x ,t ) ( x ,ω )e

N
 (24.2) 

The functions W(x,ω) and Φ(x,ω) and (24) can be expressed as: 

 
iαωxW( x ,ω ) Ae=

 
(25.1)

 

 
iαωx( x ,ω ) βAeΦ =

 
(25.2) 

By substituting Eq. (25) into Eq. (15), we obtain: 

 

2 2

2 2

K α αi 1 0

β 0K Gαi ρIω K G EIα

ρ ω G K G

Ω Ω

Ω −    
=     

     − − 

Ω Ω −

 
(26) 

Also, for non-trivial solutions, the determinant of the Eq. (26) results in the same Eq. (18) and 

the corresponding solutions can be obtained by substituting λi with αi. 

 1 1 2 2
1 2 3 4

iα x iα x iα x iα xW( x ) ( A e A e A e A e )− −= + + +  (27.1) 
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 1 1 2 2
1 2 3 41 1 2 2

iα x iα x iα x iα x( x ) ( β A e β A e β A e β A e )Φ − −− −= +  (27.2) 

with 2 2
1 1 G

1

i
β ( α α )

α
= −  and 2 2

2 2 G
2

i
β ( α α )

α
= − . 

Nodal displacements at the ends of the free-body beam element can be deduced as follows: 

 { }
1 1

1 1 2 21 2
e 1 1

1 1 2 22 3

1 1
2 41 1 1 1 2 2 2 2

1 1 1 1v A

β β β βθ A
q

e e e ev A

θ Aβ e β e β e β e

− −

− −

    
    − −    = =    

    
    − −    

 (28) 

1iα L
1e e=  and 2iα L

2e e=  

In compact form, the relation (28) can be expressed as: 

 { } [ ]{ }eq D(ω) A=  (29) 

Equivalent loads at the beam element ends can be deduced as follows: 

 

1 1 2 21 1

1 1 2 21 2
1 1

1 1 1 1 2 2 2 22 3

1 1
2 41 1 1 1 2 2 4 2

K G G K G G

EI EI EI EI

G K G G K G

EI EI EI EI

C K C C K CT A

i r i r i r i rM A
.

K C e C e K C e C eT A

Ai r e i r e i r e i r eM

Ω Ω Ω Ω

Ω Ω Ω Ω− −

− −

− −    
    − − − −    =    − −    

        

 (30) 

with i i i : i 1,2C β iα == −  and j j j : j 1, 2r α β == . 

Substituting Eq. (29) into Eq. (30), the relation between the load vector and the displacement 

vector is: 

 { } [ ][ ] { }1
e eF F( ω ) D( ω ) q

−=  (31) 

{ }
t

e 1 1 2 2where F T ,M ,T ,M=  

Thus, the matrix [ ] [ ] 1
F( ω ) . D( ω )

−
describes the spectral stiffness matrix of Timoshenko beam 

(the parameters of the spectral stiffness matrix are regrouped in Appendix 3). 

In order to obtain natural frequencies of free -vibration of the beam, the determinant of 

spectral element matrix must be null. 

 2 2cos( α L ) i sin( α L ) 1+ = −  (32) 

The corresponding solutions of Eq. (32) are: 

 
2 L

( 2n 1)π
α =

+
 (33) 

for n 1,2,3,...=
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3. RESULTS 

In this section, a simply supported beam (Figure 3) is studied and the above approach can 

easily be applied to other different boundary conditions. 

 

 

 

 

Fig. 3  Studied beam 

3.1 FREE -VIBRATION RESPONSE 

Mechanical and geometrical properties of the rectangular steel beam are regrouped in Table 1. 

SFEM, FEM numerical and exact solutions are regrouped in Table (2), simultaneously. In FEM 

approach, the beam is discretised with various meshes as: 4, 8, 15, 20, 50 and 100 elements. 

Table 1  Properties of the studied beam 

L(m) b(m) h(m) ν  E(MPa) G(MPa) ρ(N/m3) k
 

1 0.05 0.15 0.305 
9207 10⋅  979.3 10⋅  376.5 10⋅  5/6 

Table 2 illustrates the first six natural frequencies computed using SFEM, FEM and 

mathematical method. For first modes of vibration, the difference between numerical and 

exact solutions is not notable and not valid for higher modes of vibration. This difference 

becomes very important from the third mode of vibration. In this case, natural frequencies 

using numerical method are rather far from the real ones that take into account superior 

modes of vibration in the structure design. 

Table 2  First six frequencies using different methods (rad/s) 

mode 1 2 3 4 5 6 
Ratio 

% 

4 FE 678.9626 2523.1884 5317.5238 10949.4933 15360.8339 21538.3718 55.45 

8 FE 678.1246 2484.7364 5037.1170 8115.9613 11660.0463 15630.1474 12.81 

15 FE 677.9497 2476.4928 4972.8335 7871.7748 11030.1274 14394.4763 3.89 

20 FE 677.9203 2475.0985 4961.8901 7829.7686 10918.8727 14158.6384 2.19 

40 FE 677.8922 2473.7651 4951.4092 7789.4797 10811.9601 13931.1727 0.55 

50 FE 677.8889 2473.6058 4950.1563 7784.6606 10799.1660 13903.9366 0.35 

100 FE 677.8844 2473.3937 4948.4875 7778.2407 10782.1210 13867.6529 0.09 

1SE 677.8829 2473.3231 4947.9316 7776.1021 10776.4430 13855.5669 0.00 

Exact 677.8829 2473.3231 4947.9316 7776.1021 10776.4430 13855.5669 0.00 

b 

 

 
z 

y 
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Additionally, the accuracy of FEM results depends on the beam meshes. In this case, it is 

recommended to use more than 100 finite elements to reach improved results. On the other 

side, only one element of spectral element method is sufficient to achieve accurate results. 

3.2 EULER-BERNOULLI AND TIMOSHENKO BEAMS 

Based on the obtained natural frequencies, Table 3 shows a comparison between Euler-

Bernoulli and Timoshenko beams. The effect of shear deformations becomes even more 

important as the frequencies increase for h/L=0.15. 

Table 3  Natural frequencies of Euler-Bernoulli and Timoshenko beams for h/L=0.15 

Mode of 
vibration 

Euler-Bernoulli beam 

(rad/s) 

Timoshenko beam 

(rad/s) 
Ratio (%) 

1 702.9992 677.8829 3.70 

2 2811.9968 2473.3231 13.69 

3 6326.9929 4947.9316 27.87 

4 11247.9873 7776.1021 44.64 

5 17574.9802 10776.4430 63.09 

6 25307.9715 13855.5669 82.65 

Moreover, for low-frequency range, a relative agreement between dynamic stiffness of 

Timoshenko beam and Euler-Bernoulli beam can be observed. 

In the second case, the beam with different dimensions has been used to explain the 

slenderness ratio h/L effect. Mechanical and geometrical properties of the rectangular beam 

are regrouped in Table 4. Table 5 shows the comparison between Euler-Bernoulli and 

Timoshenko beams for h/L=0.0066. 

Table 4  Properties of the studied beam 

L(m) b(m) h(m) ν  E(MPa) G(MPa) ρ(kg/m3) k
 

6 0.02 0.04 0.33 972.7 10⋅  927.331 10⋅  2700 5/6 

Tables 3 and 5 show the effect of the slender ratio on the free -vibration of beams. When this 

ratio is very small, Bernoulli and Timoshenko beams vibrate identically but when the slender 

ratio of beams becomes significant, Euler-Bernoulli beam vibrates with important natural 

frequencies. This effect is more pronounced if the higher modes of vibration are taken in 

consideration. Hence, Euler-Bernoulli beam is stiffer, and the Timoshenko beam works well for 

short span and thick beams. Therefore, such approach may not be accurate in certain cases 

when calculating high natural frequencies and eigen-modes. In Euler-Bernoulli beam, the cross 

section is perpendicular to the bending central line, but in Timoshenko beam, rotation 

between the cross section and the bending line is considered. This rotation is due to shear 

deformation, which is not included in Euler-Bernoulli beam. For this reason, Euler-Bernoulli 

beam is stiffer. 
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Table 5  Natural frequencies of Euler-Bernoulli and Timoshenko beams for h/L=0.0066 

Mode Euler-Bernoulli beam (rad/s) Timoshenko beam (rad/s) Ratio (%) 

1 16.4268 16.4255 0.008 

2 65.7070 65.6869 0.030 

3 147.8408 147.7390 0.068 

4 262.8282 262.5067 0.122 

5 410.6690 409.8852 0.191 

6 591.3634 589.7406 0.275 

3.3 INFLUENCE OF THE CROSS SECTION SHAPE 

In this section, two different cross sections are used: (1) a circular cross-section and (2) a 

rectangular cross -section of same surface. Natural frequencies of studied cases are regrouped 

in Table 6. The rectangular section of beams presents a performance opposite to the circular 

section. This performance is approximately 62.72% for the first three modes of vibration, and 

around 36% for the other three modes of vibration. It can be discerned from Table 6 that the 

performance of the cross section nature decreases in correspondence to the higher mode of 

vibration. 

Table 6  Natural frequencies of geometrical cross -sections 

Mode Circular section Rectangular section Ratio % 

1 392.0017 677.8829 72.93 

2 1516.9685 2473.3231 63.04 

3 3248.6378 4947.9316 52.31 

4 5438.8499 7776.1021 42.97 

5 7956.1744 10776.4430 35.45 

6 10699.2925 13855.5669 29.50 

3.4 INFLUENCE OF THE MATERIAL PROPERTIES 

Table 7 presents natural frequencies for different material properties. In this concept, three 

values of Young’s modulus (three materials) are selected: E=207 ⋅103 GPa, 3E/4 and E/2. 

Obtained results demonstrated that mechanical nature of the used material influences the 

dynamic response of the beams. In this case, an evident conclusion can be drawn; as better 

material quality of the structure is used, free -vibration occurs. 

Table 7  Natural frequencies of different Young’s modulus values 

Mode E 3E/4 E/2 

1 677.8829 587.0659 479.3373 

2 2473.3231 2141.9845 1748.9230 

3 4947.9316 4285.1172 3498.7836 

4 7776.1021 6734.4803 5498.6801 

5 10776.4430 9332.9761 7620.3430 

6 13855.5669 11999.7206 9797.7308 
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3.5 VIBRATION MODES 

Free -vibration mode shapes of Timoshenko beam for the first five modes are illustrated in 

Figures (4-5) showing transversal and rotational shape modes of the beam vibration, 

respectively. In the previous section, it has been demonstrated that Timoshenko beam is 

sensitive to slenderness ratio. In the previous section, two slenderness ratios have been 

considered for numerical results. The finite element method is used to obtain mode shapes of 

vibration for the first five modes of rotation of Timoshenko beam. These results are obtained 

for a slenderness ratio of 0.15, and a cross-section shape factor of 5/6. The comparison of 

transversal and rotational vibrations is provided, as well as an excellent agreement between 

exact solutions and computed results. 

 

Fig. 4  Transversal vibration of the first five modes 

 

 

 

 

Fig. 5  Rotational vibration of the first five modes 
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4. CONCLUSIONS 

In this paper, SFEM formulation for free -vibration of simply supported Timoshenko beams 

was examined. The formulation of the dynamic stiffness method has been established, which 

resulted in Timoshenko beam responses. The accuracy of obtained results by SFEM displays 

the performance of this approach as compared to FEM. The following conclusions can be draw: 

• The spectral element method requires few elements to describe the dynamic beam 

response. 

• In order to reach exact solutions, FEM requires about 100 linear finite element beams. 

• For accurate FEM results, superior modes of vibration must be integrated into the 

analysis. 

• The slender ratio has an effect on the free -vibration of beams. For low-frequency 

range, a good agreement between the dynamic stiffness of Timoshenko beam and 

Euler-Bernoulli has been observed. However, they vibrate with significant natural 

frequencies for considerable slenderness ratio values. This effect became more 

pronounced when higher modes of vibration were taken into consideration. 

• In particular, Timoshenko beam is sensitive to slenderness ratio. 

• The rectangular cross-section presents high performance opposite to the circular 

section. The performance is evaluated to 62.72%. Therefore, the better quality of the 

mechanical material property caused the response of the free -vibration of the beam. 

• In general, SEFM closely follows the exact solution and needs less computational effort. 

• This approach can be used to analyse beam response with different boundary 

conditions. 

5. APPENDIX 

Appendix 1: Stiffness matrix of the beam 

The transverse displacement function v( x )  of a beam is: 

 
3 2

1 2 3 4v( x ) a x a x a x a= + + +  (A-1) 

The derivative of the displacement field of the beam can be deduced: 

 
2

2 3 4 )
6EI

θ( x ) a 2a x a ( 3x
KGΩ

+= + +
 (A-2) 

The transversal displacement v( x )  and the slope θ( x )  can be expressed in terms of the nodal 

displacement vector { }
t

e 1 1 2 2q v θ v θ= : 

 [ ] { }T
v ev( x ) N ( x ) q=  (A-3) 

 [ ] { }T
θ eθ( x ) N ( x ) q=  (A-4) 

where: 
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 [ ]

2 3

2 3 2

v 2 3

2 3 2

1 3ε 2ε ( 1 ε )λ

λ
ε 2ε ε ( ε ε ) L

21
N ( x )

1 λ 3ε 2ε ελ

λ
ε ε ( ε ε ) L

2

 − + + −
 
  − + + −    =

+  − +
 
  − + − −    

 

(A-5) 

and 

 [ ]

2

2

θ
2

2

6
( ε ε )

L

1 4ε 3ε (1 ε )λ1
N ( x )

6(1 λ )
( ε ε )

L

2ε 3ε ελ

 − 
 
 − + + −

=  +  −
 
 
− + + 

 

(A-6) 

with 
x

ε
L

= . 

The stiffness matrix due to the bending effect is:  

 [ ]
2 2 2 2

b 3 2

2 2

12 6L 12 6L

( 4 2λ λ )L 6L ( 2 2λ λ )LEI
K

12 6LL (1 λ )

sym ( 4 2λ λ )L

− 
 

+ + − − − =  −+  
 + + 

 (A-7) 

and the corresponding matrix due to shear deformations is: 

 [ ]
2 22

s 2

2

4 2 L 4 2 L

L 2 L LKG λ
K

4 2 L4 L( 1 λ )

sym L

Ω

− 
 

− =  −+  
  

 (A-8) 

Appendix 2: Mass matrix of the beam 

The total mass matrix of Timoshenko beam can be deduced by using the same process of 

stiffness matrix formulation: 

 [ ] [ ] [ ]e v θM M M= +  (A-9) 

where: 

 [ ]
1 2 3 4

5 4 6

1 2

5

v 2

m m m m

m m m

m m

sym m

ρ L
M

(1 λ )

Ω

 
 
 −
 

− 
 
 

=
+  (A-10) 
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 [ ]θ

7 8 7 8
2

9 8 10
2

7 8

9

m m m m

m m m

L m m

sym m

ρ L r
M

(1 λ )

Ω
− 

 
−  

   −   
 
 

=
+  (A-11) 

with: 

2
1

13 7 1m λ
35 10 3

λ= + + ,  ( )2
2

11 11 1m λ λ L
210 120 24

= + + ,  
2

3
9 3 1m λ λ

70 10 6
+ += , 

( )2
4

13 3 1m λ λ L
420 40 24

+ += − ,  ( )2 2
5 L1 1 1m λ λ

60 120105
= + + , 

( )2 2
6

1 1 1m λ λ L
140 60 120

+ += − ,  7
6

m
5

= ,  8
1 1

m λ L
10 2

 − 
 

= , 

2 2
9

2 1 1
m λ λ L

15 6 3

 = + + 
 

,  
2 2

10
1 1 1

m λ λ L
30 6 6

 = − + − 
 

 

Appendix 3: Spectral stiffness matrix 

The parameters of the spectral stiffness matrix are: 

 

11 12 13 14

21 22 23 24
spect

13 14 11 12

23 24 21 22

K K K K

K K K K
K

K K K K

K K K K

 
 
   =   − −
 − − 

 (A-12) 

where: 

Ω  = = − − − − + + −
 

2 2 2 2
11 33 k 1 2 2 1 1 2 1 2 1 2 2 1K K η K G( β C β C ) ( β β )(1 e e ) ( β β )(e e )

 

( ) ( )( ) ( )( )2 2 2 2
22 44 K 1 2 1 2 1 2 1 2 1 2K K iη EI r r β β 1 e e β β e e = = − − − + + +

 
 

Ω  =− = − − + + + + + − +
 

2 2 2 2
12 34 K 2 1 1 2 1 2 1 2 1 2 2 1 1 2 1 2 2 1K K G β β β β β βη K (C C )( )(1 e e ) (e e )( )(C C ) 4e e ( C C )

Ω= = − − + −2 2
13 31 K 1 2 2 1 1 2 1 2 1 2K K 2η K G( β C β C )[ β e (1 e ) β e (e 1)]  

( )( )Ω= − = − − − −14 32 K 1 2 2 1 1 2 1 2K K 2η K G( β C β C ) e e 1 e e  

( )( ) ( ) ( )( )2 2 2 2 2 2 2 2
21 K 1 2 2 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2K iη EI β r β r e e 1 e e β β r r 1 e e e e e e 4 = − + + − − + + + + + −

 
 

( )( )( )23 41 K 1 2 1 2 1 2 1 2K K 2iη EIβ β r r 1 e e e e= − = − − − −  

( ) ( ) ( )2 2
24 42 K 1 2 1 1 2 2 2 1K K 2iη EI r r β e 1 e β e e 1 = = − − − + −

 
 

( )( ) ( )( )2 2 2 2 2 2 2 2
24 43 K 1 2 2 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2K K iη EI β r β r e e 1 e e β β r r 1 e e e e (e e 4) = − = − + + − − + + + + + −

 
 

and K 2 2 2 2 2 2
1 2 1 2 1 2 1 2 1 2 1 2

1
η

( β β ) (e e ) ( β β ) (1 e e ) 8β β e e
=

+ + − − + −
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