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SUMMARY

Super duplex stainless steels are alloys that have good corrosion resistance properties and are
intended for applications in corrosive environments. Due to their chemical composition and
microstructure providing high strength and thermal resistance as well as high ductility, the
machinability of these alloys is difficult, resulting in longer production cycles and higher costs in
terms of more frequent replacement of tools. In this paper, the machinability of the super duplex
EN 1.4410 was investigated under environmentally friendly machining process by using cold
compressed air as a coolant. Experimental data were generated using the range of selected input
parameters and correspondingly analysed surface roughness as output data. Predictive models
were developed in order to make a comparison of their prediction performance. In addition, this
paper also describes the methodology for optimised development of a particular predictive model.
Finally, comparative analysis of the accuracy of predictive models was performed in order to
define which model represents the best fit for the analysed experimental data, and also to show
validity of the optimisation process.

KEY WORDS: ANFIS; response surface method; super duplex stainless steel; surface roughness;
vortex tube.

1. INTRODUCTION

Stainless steel or corrosion-resistant steel is an iron alloy containing at least 10.5% of
chromium (modern stainless steels contain up to 30% of chromium), unlike the ordinary steel
that is rapidly oxidised to the air if it is not in some way corrosion-protected. Unlike other
materials that are mainly classified by their chemical composition, corrosion-resistant steels
are more often classified according to their microstructure. The microstructure of stainless
steel can be ferrite, martensite and austenitic, so it is characterised as either ferrite, martensite
or austenitic stainless steel. There is also a group with a structure composed of approximately
50% of austenite and 50% of ferrite. These are duplex stainless steels which have better
properties than austenitic and ferrite steels.
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Today, duplex steels are applied in many places due to their superior corrosion resistance and
very good mechanical properties. Due to their high ferrite content, they are ferromagnetic, and
they also have higher thermal conductivity and lower thermal expansion than austenitic steels.
In places where high resistance to puncture corrosion is required, the choice of austenitic steel
is more appropriate. Because of the relatively high strength, duplex steels are the optimal
choice for structures exposed to corrosion, where their remarkable combination of corrosion
resistance and mechanical properties are highlighted. Duplex steels have a much larger
stretching limit (about 425 MPa) versus austenitic (about 210 MPa) steels. Their hardness is
also higher and their abrasion wear resistance accordingly. A lot of new duplex steels have
good toughness and ductility. Because of the large fraction of the ferritic phase, the
temperature drops rapidly from a tough to a fragile area, similarly to ferrite stainless steels.
The temperature range of their application is limited to -40°C or 315°C due to numerous
microstructure precipitates that can be isolated at a relatively low temperature, which have a
poor influence on corrosion resistance and mechanical properties. The first stainless duplex
steel was manufactured in Sweden in 1930 and has been successfully applied in the paper
industry as a replacement for austenitic stainless steel that is sensitive to inter-crystalline
corrosion. At the same time, the first duplex cast was manufactured in Finland. The period
after the Second World War marked the beginning of a more intensive application of crushed
and cast duplex alloys in the process industry. The first duplex steels (duplexes of the first
generation) do not have a well-balanced chemical composition and generally do not contain
nitrogen. Such steels are difficult to weld and have poorer mechanical properties and
corrosion resistance compared to later developed duplex steels in which nitrogen is an
indispensable legal supplement. The division of the second-generation duplex steels was based
on the resistance of the duplex steel to perforated corrosion by the Pitting Resistance
Equivalent Number (PREN), which can be calculated as follows:

PREN = %Cr + 3.3 (%Mo+0.5W) +16%N ™)

1.1. LITERATURE OVERVIEW

Super and hyper duplex steels contain more elements which provide them with the PREN
value over 40. The basic elements in duplex steel are chromium and nickel, but nitrogen,
molybdenum, copper, manganese, silicon and tungsten also play a very important role in the
formation of microstructures. An increased percentage of molybdenum increased their
corrosion resistance. They have great application as construction materials. Super duplex
stainless steels are extremely corrosion-resistant alloys intended for applications in corrosive
environments such as saltwater. Because of their chemical composition and microstructure
which ensures high strength and thermal resistance as well as high ductility, the machinability
of these alloys is poor, resulting in longer production cycles and higher costs in terms of more
frequent tool replacement.

Oliveira Junior [1] investigated the turning process of SAF 2507 alloy in order to analyse the
influence of the machining process on corrosion resistance in practical applications. The
results of the experiments show that using PVD coated tools at high pressure cooling achieves
a longer tool life, a satisfactory surface finish quality, and high corrosion resistance of
machined material after the machining process.

Rajaguru [2] investigated the machining of super duplex steel by using tools with different
types of coatings. Process characteristics such as tool wear, cutting force, cutting temperature,
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and integrity of the machined surface were analysed. Tool wear analysis has shown that the
[MT-TiCN]Al203 coating tool provides a relatively good wear resistance due to high MT-TiCN
hardness and Al,O3 oxidation stability. TiN-[MT-TiCN]Al.Oz coatings are exposed to relatively
high cutting force values. TiOCN-Al;03-TiCN-[MT-TiCN]-TiN coating provides lower cutting
forces due to high TiOCN hardness and their lower friction coefficient, AITiN coating generates
the highest temperature due to high friction and low thermal conductivity. [MT-TiCN]-Al;03
coating provides lower surface roughness due to increased resistance to abrasion wear of the
cutting edges. Finally, it can be concluded that [MT-TiCN]-Al,03 coating provides a relatively
good performance in terms of tool wear, cutting force, cutting temperature and surface
integrity compared to other used coatings.

In his research, Paiva [3] used three types of PVD coatings: Al50Cr50N, Al60Cr40N, and
AI50Cr50N/Ti95Si5N, which were applied to a carbide tool. Analysing the wear mechanisms of
the used tools, it resulted that adhesive wear is dominant in all types of coatings. Due to the
more favourable chemical composition, the AI50Cr50N/Ti95Si5N coating provides less friction
and consequently less tool wear.

Kumar [4] analysed the impact of machining parameters on the tool wear during the turning
experiment of super duplex stainless steel SAF 2507 with uncoated carbide tool. The process
was carried out under dry conditions, wet machining and by using gaseous carbon dioxide as a
coolant. Carbon dioxide has a beneficial effect as a coolant, which ensures less tool wear.

Ahmed [5] studied the wear mechanisms of uncoated and coated carbide tools during the
turning experiment of SAF 2507 alloy. The results of the experiments show that the dominant
mechanism of tool wear is adhesive wear for all the used tools and that AITiN coating provides
better process characteristics compared to CVD TiCN + Al;03 coatings and uncoated tools in
the sense of a significant reduction in the formation of the built-up edge. Dhanachezian [6]
investigated the machinability of the austenitic stainless steel AISI 316L and super duplex
2507 by using tools coated with Ti-AIN PVD coatings. The results of the experiments show that
higher cutting forces, poor quality of the treated surface and higher tool wear occur during the
machining of super duplex stainless steel. It is also concluded that more preferred forms of
separate particles occur during the machining of austenitic stainless steel. Finally, it can be
concluded that the super duplex stainless steel 2507 is an extremely difficult material for
machining. Kadam [7] conducted the turning experiments of super duplex stainless steel with
uncoated and Physical Vapor Deposition (PVD) coated carbide inserts under dry cutting
condition. The parametric influence of cutting speed, feed and depth of the cut on the surface
finish and machinability aspects, such as cutting force and tool wear, were analysed. Tool wear
was analysed by using an optical microscope and scanning electron microscope. The study
includes the identification of tool wear mechanism occurring on the flank face. The
characterisation of the coating was made by the Calo test for the measurement of coating
thickness and nanoindentation for hardness. Comparison of performance of PVD coatings
TiAlSiN (3.3 um), AITiN (3 um) and AITiN (7 um) has been made in terms of tool life. The
coatings were produced on P-grade tungsten carbide inserts by using High Power Impulse
Magnetron Sputtering (HiPIMS) technology. The findings of the study also provide the
economic solution in case of dry turning of super duplex stainless steels. There have also been
only a few papers on mathematical modelling of machining processes of super duplex stainless
steel. Airao [8] investigated the surface roughness of super duplex 2507 stainless steel in dry
and wet machining condition. Dry and wet milling experiments were conducted with three
levels of cutting speed, feed rate and constant axial depth of the cut. The multiple regression
analysis has been applied to discover the relationship between surface roughness and cutting
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parameters. The regression equation revealed that the feed rate is the most dominant factor
that influences the surface roughness followed by the cutting speed. It is also concluded that
surface finish obtained in wet machining is much better compared to dry machining. In his
experimental study, Thiyagu [9] analysed the turning process of super duplex stainless steel
with the objective of minimising surface roughness and cutting force. The design of
experiments and optimisation were done using Box-Behnken design (BBD) and Response
surface methodology (RSM). The factors and levels considered for experimentation include
cutting speed, feed rate, depth of the cut, and tool nose radius on three levels. A second-order
response surface models developed for surface roughness and cutting force were used in
predicting the response in the design space. The Analysis of variance (ANOVA) and R-Squared
value reveal that the developed models were significant. Surface roughness increases with the
increase in the feed rate and cutting speed. In addition, the models™ adequacy was validated
using confirmation experiments. The prediction error accounts from -4.07 to 0.55% for surface
roughness and -2.47 to 2.52% for cutting force. Koyee [10] coupled Taguchi approach with
fuzzy-multiple attribute decision-making methods for achieving better surface quality in
constant cutting speed face turning of EN 1.4404 austenitic, EN 1.4462 standard duplex and EN
1.4410 super duplex stainless steels. Two typical multiple attribute decision making
techniques were simultaneously adopted to determine multi-surface quality characteristics
indices. Additionally, the results of analyses of the means and the validation experiments
confirm that the optimum cutting conditions derived by this method produce far better surface
finish than the best finish obtained in the course of experimentation. The analyses of variance
results have shown the predominant effect of feed rate on the surface quality. Finally, the
collected chip at the constant cutting speed and varying feed rates and depth of cuts has shown
that friendlier-to-machine chips are obtained when machining the austenitic stainless steels
compared to duplex stainless steel grades. Kumar [11] conducted the analysis and
optimisation of surface roughness and tool flank wear during machining of super duplex
stainless steel with uncoated carbide inserts as cutting tool. The experiments were repeated
under three different cutting conditions, namely dry, wet and gas cooled machining. Cutting
speed, feed rate and depth of the cut were the input turning process parameters. Taguchi
method was used to analyse and optimise the output response parameters. Validation
experiments were carried out to compare the experimental results with the predicted optimal
values.

It is evident from the abovementioned papers that all literatures in general studied dry and
conventional wet machining process of super duplex stainless steel. Only a few researchers
applied gaseous cooling with liquid CO». The application of cold compressed air as coolant by
using vortex tube in the machining of super duplex stainless steel represents a new approach
to reduce the surface roughness and the tool flank wear. Furthermore, the development and
optimisation of the surface roughness predictive model based on neuro-fuzzy inference
systems for the super duplex stainless steel turning at various cutting environments have not
been applied. In this paper, the machinability of the super duplex stainless steel EN 1.4410 will
be investigated in terms of obtaining the satisfactory quality of the treated surface by using
cold compressed air as a coolant. By performing the turning experiments with the chosen
range of input parameter limits, we will develop mathematical models and optimised
predictive models. The comparative analysis will determine the accuracy of each developed
predictive method.
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1.2. ABOUT THE MOSE PROJECT

This paper has been composed within the workshop on machinability of super duplex stainless
steel which was used for manufacturing bearing crowns at the Brodosplit Shipyard Company
in Split, Croatia, Figure 1. The bearing crowns were used for the construction of the gates, as a
vital part of the well-known MOSE project. The main objective of this project is the
construction of the gates that will protect the city of Venice from flooding. The altitude of the
city of Venice is very low and its proximity with the sea makes it vulnerable to the tides. When
strong tides occur, the city is flooded by the sea, and even though people can swim in the
streets, there are some negative points, such as the patrimony destruction. Global warming
does not help in this process, because the temperature increase results in the dilatation of the
ocean volume and the melting of the ice, which causes a higher level of the sea. It has then been
decided, in the early 2000s, to build a giant structure that would prevent these floods. This
structure is composed of different gates (27 m long, 20 m wide and 5 m each) that open and
shut down vertically. In the machining part of the project, Brodosplit had a task of
manufacturing the bearing crowns as a support for the bearings. These crowns had to be made
in super duplex stainless steel because of its high resistance to corrosion (including seawater
corrosion).

Fig. 1 Bearing crown

2. EXPERIMENTAL SETUP

The experimental work was performed at the Laboratory of Machine Tools at the Faculty of
Electrical Engineering, Mechanical Engineering and Naval Architecture in Split. The aim was to
obtain the measurement results that will enable the mathematical modelling of the selected
output value of surface roughness Ra in the turning process. The experiments were carried out
on the universal lathe machine by using cold compressed air as a coolant, Figure 2.
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Fig. 2 Turning experiment of super duplex stainless steel

C5-CSRNR/L-27060-12-4 with hard metal cutting insert SNGN 12 07 08 was used as tool
holder. The workpiece material was super duplex stainless steel 1.4410 according to EN
10028-7: 2007, with dimensions g50x250mm. The chemical composition of workpiece material
is presented in Table 1.

Table 1. Chemical composition of workpiece material

Element C Mn Si N P Cr Ni Mo Fe N Cu

% 0.012 | 0.786 | 0415 | 0.0074 | 0.0181 | 2436 6755 | 3.69 | 635 | 0.07 | 0.165

The measurements of surface roughness were obtained by using profilometer Mitutoyo
Surftest 301. Cut-off length and the sampling length for surface measurements were selected
to be 0.8mm and 5.6mm, respectively.

In this research, the cooling of the cutting zone is performed by means of Cold Air Guns which
use vortex tube technology and filtered compressed air to produce sub-freezing air with the
temperature of -34 C. With no moving parts to wear out, Cold Air Guns require no electricity at
the target, just a compressed air source. The effective cooling from a Cold Air Gun can
eliminate heat-related parts expansion while improving the parts’ tolerance and surface finish
quality. The air is a free available natural resource and compressed air is available on the
regular basis at the shop floor for other purposes. It has no adverse effect on the health of the
operator.

Employment of compressed cold air for cooling in the machining operations is a relatively new
technique. Air that rotates around an axis is called vortex. The vortex tube, also known as the
Ranque-Hilsch vortex tube, is a mechanical device that creates cold and hot air by forcing
compressed air through a generation chamber, which spins the air at a high rate of speed into
the vortex [12].

The vortex tube consists of an inlet nozzle, vortex chamber, cold-end orifice, hot-end control
valve and a tube. It has no moving parts. High pressure air stream enters into the vortex tube
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tangentially, and there it splits into two lower pressure streams, one hot and one cold. Cold gas
stream leaves the tube through the central orifice near the entrance nozzle, while the hot gas
stream flows toward the control valve and leaves the tube there, Figure 3.

Compressed Air In

l Vortex Generation Chamber

I A O e i e W fl

I e
—_ g —

Cold Air Out Hot Air Out

Fig. 3 The schematic representation of vortex tube working principle [12]

The aim of the experimental study of this paper is to obtain the measured results of surface
roughness. In the next chapter, by processing all experimental data, we will develop predictive
models in order to describe the dependence of the observed output value on a particular input
processing parameter.

3. SURFACE ROUGHNESS PREDICTIVE MODELLING

3.1. MATHEMATICAL MODELLING OF SURFACE ROUGHNESS

The results of the experiments were used to develop a mathematical surface roughness model
by using the regression analysis method. The surface roughness equation is modelled using the
response surface method (RSM), which consists of a series of statistical techniques that are
useful in analysing the problem in which the response depends on several variables to
optimise the response itself. For the calculation of regression constants and parameters, the
central composite (CCD) second-order design was used in the Design Expert software package.
The number of experimental points required in the second-order trial plans is determined by
the following expression:

k
N=2"+n,+n,

@
Where:

2k — the number of experiments in the basic points,

n, - number of repeated experiments at the middle level,

nq - number of experiments on the central axes.

The points which provide equal precision in all directions are added to the central axes. These
points are designated as alpha (a) and calculated by the following equation:

a=(2")/* 3)

where k is the number of input parameters.
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Optimisation implementation in the Design Expert software requires the application of limit
input parameters whose values have been adopted on the basis of the manufacturer's
recommendation and physical limitations of the machine, as shown in Table 2.

Table 2. Physical values of input parameters

Input Unit of Lower Upper
parameters measure bound bound
Feed mm/rev 0.063 0.24
Cutting speed m/min 28 45
Cutting depth mm 1 2

Table 3 in Chapter 4 shows all input parameters of the experiment and the corresponding
response surface roughness. The impact of input parameter on response can be found by the
variance analysis (ANOVA). The variance analysis is a comparison procedure of multiple
samples, with each sample being the basic set. After examining the significance of the
coefficients of the second-order model, the final mathematical model of surface roughness was
obtained as follows:

R, =-0.62164+4.23948- f, +0.00561015 v, +1.29789-a, —

~0.036536 f, v, +1.67702 f, -a, —0.012941-v, -a, —

- 8.61849- f7 +0.000588806 -v; —0.33654 -a, @

Where:

R, - surface roughness,
V; — cutting speed,

ap - cutting depth,

fn - feed.

Dependence diagrams of the mathematical model of surface roughness on the processing input
parameters are shown in Figures 4, 5 and 6.

surface
roughness

cutting i . -
speed Ees i

Fig. 4 Surface roughness dependence on feedrate and cutting speed under constant cutting depth value
1.5mm
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3.2. ADAPTIVE NEURO-FUZZY PREDICTIVE MODEL

An adaptive neuro-fuzzy inference system (ANFIS) is a hybrid predictive model which uses
both the neural network and the fuzzy logic to generate mapping relationship between inputs

and outputs.

The structure of this model consists of five layers in which each layer is constructed by several
nodes. Same as in the neural network, the inputs of each layer are gained by the nodes from
the previous layer, as shown in Figure 7. Moreover, a layer with fuzzy rules and an output layer
are contributed to the construction of this model.

Description of each layer in th

1. Layer 1: Every node i in

e ANFIS model is as follows [13]:

this layer is a square node with the node function:

0,-1=MA,.(X)
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where u, (x) is a membership function for the input x.
In this study, we selected the Gauss2mf linear membership function because it generates
the lowest value of mean squared error.

2. Layer 2: Every node in this layer is a circle node which multiplies the incoming inputs
and sends the product out. Each node output represents the firing strength of a rule.
Wi =g (X)xpp (V) (6)
3. Layer 3: Every node in this layer is a circle node labelled N. The i-th node calculates the
ratio of the i-th rule’s firing strength to the sum of all rules’ firing strengths:
_ w;
Wi =—" 7
w;+w,

4. Layer 4: In this layer, Takagi-Sugeno fuzzy type rules (if-then rules) are applied in the
weighted output of each node.
of =w,f; ®)
where f; represents the output of i-th Takagi-Sugeno-type fuzzy rules.
5. Layer 5: This layer represents the modelled output by the ANFIS network.

5 no_
0; =output=zizlwifi 9)
Layer 1 Layer 2 Layer 3 Layer 4 Layer 5
(Fuzzification) (Product) (Normalization) (De-fuzzification ) (Output)
X; X,

-y
Rule 1| TSK-tvpe
| J P

~ W, f 1

H

[=

Fig. 7 Structure of ANFIS model [13]

ANFIS DESIGN

ANFIS modelling of the machining processes was mainly used for the prediction of surface
roughness, tool life and cutting forces [14, 15, 16]. Prior to implementing this method, it is
necessary to execute experimental data sharing on learning, testing, and validation sets. It is
followed by its implementation in the MATLAB software package. Creating a fuzzy system
provides an automatic structure of the ANFIS network. ANFIS networks are generated with
differences in fuzzy logic systems, generated by differences in membership functions, by the
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number of affiliation functions for each input variable and the value type for the output
variable. ANFIS architecture is composed of three input variables and one output variable.
Each input value generates three linear Gauss2mf membership functions, and the output value
is also generated by the linear Gauss2mf function. After generating the fuzzy logic system and
structure of the ANFIS network, the if-then rule follows the train of the ANFIS network hybrid
algorithm, which takes place over 100 cycles (epochs). The obtained ANFIS training network
mean squared error is 0.0075593. After training the ANFIS network, we proceed with the
procedure for testing the network. An error of 0.058022 was found when testing the ANFIS
network. After testing the ANFIS network, the validation of the trained ANFIS network is
provided. During the validation of the ANFIS network, 0.051512 validation error was obtained.

3.3. OPTIMISATION OF ADAPTIVE NEURO-FUZZY PREDICTIVE MODEL

In order to reduce mean square error of the previously developed ANFIS model, in this section
we will describe the implementation of evolutionary training of the ANFIS model by using the
genetic algorithm source code. Genetic algorithms are search algorithms based on the
mechanics of natural selection and natural genetics. This method combines Darwinian style
survival of the fittest among binary string "artificial creatures"” with a structured, yet
randomized information exchange. Genetic algorithms consist of a population of binary bit
strings. Initial values are determined randomly and evaluated. Each combination of ones and
zeros is a possibility in the complex space that can be searched and the relation between them
is found in the evaluation function that will return a "fitness" or ranking for that particular bit
string [17].

Genetic algorithm consists of three main operations:

e Reproduction (Selection) - process in which individual strings are copied according to
their fitness. Ones with higher fitness value have a better chance to survive in the next
generation.

e Crossover - process that can be divided into two steps. First, pairs of bit strings will be
mated randomly to become the parents of two new bit strings. The second part consists
of choosing a place (crossover site) in the bit string and exchanging all characters of the
parents after that point. The process tries to artificially reproduce the mating process
where the DNA of two parents determines the DNA for the newly born.

e Mutation - included, not because the previous process of reproduction and
recombination are not sufficient, but because of the probability that a certain bit cannot
be changed by the previous operations due to its absence from the generation, either by
a random chance or because it has been discarded. It only implies the change of 0 for 1
and vice versa.

e Genetic algorithm and neural networks are both inspired by computation in the
biological system. In a genetic algorithm, only items of data that have value in predicting
the outputs are retained as inputs to the system. A neural network, on the other hand,
does not exclude irrelevant data inputs from the final system. It nullifies the effects of
such data inputs by assigning a low weight to them in the decision process.

In this part of the paper, the genetic algorithm will be used for evolutionary training of the
artificial neural network, which is part of the structure of the proposed ANFIS predictive
model. Combining artificial neural networks with evolutionary algorithms leads to
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evolutionary artificial neural networks. The genetic algorithms are more appropriately said to
be an optimisation technique based on natural evolution.

They include the survival of the fittest idea algorithm. The idea is to first ‘guess’ the solutions
and then combine the fittest solution to create a new generation of solutions which should be
better than the previous generation, Figure 8.

START

Expenmental data
amrangement

Meural network setup with
random initial weights

I

Buikding neural network
with inputs and outputs

VWeight modificaion

MUTATION Compute hidden
layer value, output value
and filness(MSE)
CROSSOVER
Convergence
SELECTION of algorith

YES

Train neural network
with best weigths

END

Fig. 8 Flowchart of the evolutionary training of neural network

4. ANALYSIS OF PREDICTIVE MODELS

In order to evaluate the performance index of the learning algorithm in solving the selected
task, it is necessary to define the accuracy unit of measure. By using a measure of accuracy for
the typical learning tasks, it is possible to compare the applied algorithm with other learning
algorithms. In order to compare the predicted and measured surface roughness values, a
statistical approach will be used to determine the root mean square error according to the
expression:

1IN 2
RMSEz\/NZizl(M,. ~P) (10)

Where:
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M; - measured value

P; - predicted value

N - number of measurements

The statistical error of surface roughness values predicted by the response surface method and
ANFIS-based learning database method are shown in Table 3, and a graphical comparison of
the accuracy of developed predictive models in Figure 9.
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0.9460
0.3212
0.6857
0.3791
1.2065
1.0687
0.3752
0.6162
0.6471
0.7761
0.7761
0.7761
0.7761
0.7761
0.7761

(%)
ANFI
S

0.49
1.01
0.03
0.28
0.26
1.21
1.82
1.44
4.01
1.49
3.61
1.67
0.36
1.50
0.58
0.81
0.58
1.03
1.03
1.03

ANFIS
Ra

0.3150
0.6841
0.3895
0.6381
0.4052
1.0162
0.2431
0.7492
0.2295
1.1457
1.1853
0.4241
0.6084
0.6152
0.7484
0.7484
0.7484
0.7484
0.7484
0.7484

Table 3. Results of performed experiments and comparison of accuracy of predictive models

RMSE Optimised RMSE

(%)
Optimised
ANFIS
0.11
0.54
0.01
0.63
0.11
0.36
0.07
0.02
0.66
013
0.99
0.58
0.19
0.79
0.04
0.19
0.04
0.41
0.41
041
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Fig. 9 Comparison of the accuracy of developed predictive models

5. CONCLUSION

This paper presents the development of surface roughness predictive models in the turning
process of super duplex stainless steel under environmentally friendly conditions. Input
parameters are feed, cutting speed and cutting depth. Based on the total of 20 obtained
experiments, surface roughness prediction models were developed using the response surface

method, variance analysis and optimised ANFIS predictive method, and the following
conclusions were obtained as follows:

e By analysing the diagrams obtained by the regression analysis, it can be concluded that
the feed has the greatest influence on the roughness of the treated surface. The
determination coefficient of the mathematical model is R? = 0.85. It can be concluded

that the model is representative because it explains 85% of the deviations resulting from
the processing parameters.

o 15 sets of experimental data were used for the training of the ANFIS network, while 3
sets of data were used to test the developed network. Two sets of data were used for the
validation of the ANFIS network. The average accuracy of the ANFIS model validation is

95%, indicating the possibility of applying this model when predicting surface roughness
for other sets of input data.

e By analysing Figure 9, it can be concluded that all predictive models adequately describe
the observed process, given the small differences in predicted and measured surface
roughness values. By analysing the accuracy of the developed models, it can be
concluded that the optimised ANFIS model is more accurate since it achieves a
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maximum root mean square error value of 0.79% compared to the value of 4.01% for the
ordinary ANFIS model and 32.72% for the variance analysis, as illustrated in Table 3.

Based on the developed predictive models and knowing the advantages and limitations
of these processes, it is possible to finally achieve a more productive process based on
the further development and application of the artificial intelligence methods and
development of a more intelligent production system.
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