| NAME OF THE COU | IRSE | ENVIRONMENTA | L GEOCH | EMISTRY | | | | | | | |---|---|----------------------------------|--------------------|---------------------------|-----------|--------|---------|---|--|--| | Code | | | Year of s | ear of study | | | | | | | | Course teacher | | Prohić, PhD, Full
sor, tenure | Credits (| ECTS) | 5.0 | | | | | | | Associate teachers | | | Type of ir (number | nstruction
of hours) | L
30 | S
5 | E
10 | F | | | | Status of the course | compu | Isory | Percenta | ge of
on of e-learning | / | | | | | | | COURSE DESCRIPTION | | | | | | | | | | | | Course objectives | The goal of the course is to provide the basic theoretical and practical knowledge about the processes related to environmental geochemistry. The aim is to train students in identifying and addressing the causes and consequences of global environmental problems and trends of pollution in various environmental media. | | | | | | | | | | | Course enrolment requirements and entry competences required for the course | Undergraduate qualification (6th level of EQF or CROQF). | | | | | | | | | | | Learning outcomes
expected at the
level of the course
(4 to 10 learning
outcomes) | The student will: - solve the causes and consequences of global environmental problems - analyse the development of pollution in various environmental media - analyse the ozone layer - analyse the acid rain - analyze the greenhouse effect - define the concept of geo medicine - define the basic criteria of environmental ethics | | | | | | | | | | | Course content
broken down in
detail by weekly
class schedule
(syllabus) | Glossary, introductory remarks, definition and basic concept of environmental geochemistry 3. Environment in crisis; analysis of dynamic environmental system, equilibrium, geochemical system, feedback mechanism Biogeochemical system of carbon Greenhouse effect, greenhouse gases, effects, causes, consequences Biogeochemical cycles of ozone and halogenides Ozone layer depletion, ozone hole, causes, consequences. Biogeochemical cycles of sulphur and nitrogen Acid rains, pH of rainwater, causes and consequences of acid rains, case studies -11. Chemical time bomb, definition, explanation of concept, prediction of CTB, case studies 12 - 13. Trace elements and health, concept of geomedicine, case studies 14 - 15. Problems of trace element analysis in environmental sciences. 17. Introduction to environmental ethics | | | | | | | | | | | Format of | ⊠ lect | ures | | ⊠ independer | nt assiai | nments | | | | | | | | | | | | | | | | | | instruction | ⊠ seminars a | nd works | hops | □ multimedia | | | | | | | | | |--|---|--------------|---------------------------------|------------------------------|------------------|----|--|--|--|--|--|--| | | ⊠ exercises | | | □ laboratory | | | | | | | | | | | □ <i>on line</i> in en | tirety | | ☐ work with mentor | | | | | | | | | | | ☐ partial e-lea | rning | | | | | | | | | | | | | ☐ field work | _ | | | | | | | | | | | | Student responsibilities | Regular attend | ance of cl | asses, tests, | written and ora | l exam, | | | | | | | | | - | Class A. F. Booker B. Branding Communication | | | | | | | | | | | | | Screening student
work (name the
proportion of ECTS
credits for each
activity so that the
total number of
ECTS credits is
equal to the ECTS | attendance | 1.5 Research | | | Practical traini | ng | | | | | | | | | Experimental work | Report | | | | | | | | | | | | | Essay | | Seminar
essay | | | | | | | | | | | | Tests | 0.5 | Oral exam | 2.0 | | | | | | | | | | value of the course) | Written exam | 0.5 | Project | 0.5 | | | | | | | | | | Grading and evaluating student work in class and at the final exam | Frontal lectures. Exercises in groups. Preparing written assignment about a selected subject. Attending classes, preliminary exams, homework assignments, seminars and individual work on specific problems | | | | | | | | | | | | | Required literature
(available in the
library and via other
media) | | - | Number of copies in the library | Availability via other media | | | | | | | | | | | Baird, C Cann,
W. H. Freemar | | | | | | | | | | | | | | vanLoon G.W.
chemistry - a g
press, 515 str. | | | | | | | | | | | | | | Berner, E.K. & environment : \ Prentice Hall, I | Nater, Air | | | | | | | | | | | | | E. Turban: Decision Support and Expert Systems (Management Support Systems), Macmillan Publishing Company New York, 1993. | | | | | | | | | | | | | Optional literature
(at the time of
submission of study
programme
proposal) | To be defined in accordance with student's particular interests and theme of student's assignment. | | | | | | | | | | | | | Quality assurance methods that ensure the acquisition of exit competences | Quality assurance will be performed at three levels: (1) University level, through questionnaires; (2) Faculty level by Quality Control Committee; (3) Lecturer's level. | | | | | | | | | | | | | Other (as the proposer wishes to add) | | | | | | | | | | | | |