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SUMMARY 

This	 work	 proposes	 a	 refreshing	 technique	 that	 utilizes	 the	 Taylor	 expansion	 to	 improve	 the	

computational	 efficiency	 of	 the	 multi-frequency	 acoustic	 scattering	 problem.	 The	 Helmholtz	

equation	in	acoustic	problems	is	solved	using	the	boundary	element	method	(BEM).	In	this	work,	

the	Taylor	expansion	is	utilized	to	separate	frequency-dependent	terms	from	the	integrand	function	

in	the	boundary	integral	equation	so	that	the	wave	number	is	independent	of	the	equation	system,	

thereby	avoiding	the	time-consuming	frequency	sweep	analysis.	To	conquer	the	non-uniqueness	of	

the	solution	for	the	external	acoustic	field	problem,	the	Burton-Miller	method	is	used	to	linearly	

combine	the	conventional	boundary	 integral	equation	and	the	hypersingular	boundary	 integral	

equation.	Moreover,	to	eliminate	the	computational	difficulties	caused	by	the	Burton-Miller	method,	

the	Cauchy	principal	value	and	the	Hadamard	finite	part	integral	method	are	used	to	solve	singular	

integrals.	 Two-dimensional	 numerical	 examples	 are	 exploited	 to	 verify	 the	 effectiveness	 and	

compatibility	of	the	algorithm	for	the	multi-frequency	analysis.	

KEYWORDS:	 acoustic	 analysis;	 boundary	 element	 method;	 Taylor	 expansion;	 Burton-Miller	

method;	frequency	sweep.	

1. INTRODUCTION 

With the development of economic construction, urban road traffic is becoming more and more 

developed, and the number of car users is also increasing, therefore, road traffic noise pollution 

is becoming more and more serious [1-3]. Any acoustic system has three main links, namely the 

sound source, the transmission route, and the receiver [4]. However, in practical applications, 
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the more effective noise control method is usually considered from two aspects, that of the noise 

source and that of the noise propagation path. Although the control of noise source is the most 

fundamental measure, it has higher technical and economic requirements, while it is convenient 

and economical to set up a sound barrier on the transmission path to block the propagation of 

noise. As a result, the use of sound barriers to protect sensitive points near sound sources is an 

important measure in solving noise pollution [5-7]. The performance of the sound barrier is 

evaluated by many scholars using various numerical methods [8-13]. Among these numerical 

methods, the boundary element method (BEM) has a better application value than the finite 

element method (FEM) in the acoustic analysis due to its high accuracy, dimensionality 

reduction, and easy mesh generation [14-18]. In addition, for the external acoustic field, the 

Sommerfeld radiation conditions at infinity are automatically satisfied [19-21]. Engineering 

acoustic problems are often unbounded, and the BEM can automatically transform the infinite 

domain problem into a finite domain problem on the boundary. Therefore, BEM has always been 

an extremely important numerical method in acoustic analysis [22-25] and is selected for the 

acoustic analysis of two-dimensional problems in this work. 

To observe the level of noise in noise control engineering, it is usually necessary to evaluate the 

response function over a broadband range [26]. However, the n-th order Hankel function of the 

first kind ( 1 )
nH ( kr )  appears in the Green function for two dimensions Helmholtz equation, 

thereby, the coefficient matrix is related to the wave number k. Moreover, due to the frequency 

dependence of the boundary element coefficient matrix, all components in the traditional 

boundary element coefficient matrix must be recalculated at each different frequency. Since 

building the matrix requires a large number of numerical integrations, the recalculation process 

would cause a waste of time if a large number of individual frequency points need to be solved. 

Consequently, the attractiveness of the BEM decreases slightly when performing broadband 

analysis [27]. To circumvent this gap, some techniques have been proposed to solve multi-

frequency problems, such as the fast multipole methods(FMM) [28], the frequency interpolation 

technique [29], the Green function interpolation technique [30], the frequency interpolation 

transfer function [31], the matrix interpolation and solution iterative calculation [32], the 

frequency response function approximation method [33] and the basic solution exponential 

term approximation technique [26,34]. Based on the approximation method of the basic solution 

exponential term, this work proposes a novel method for multi-frequency acoustic analysis. The 

method only performs Taylor expansion on the Hankel function in the Green function to obtain 

a frequency-independent matrix of boundary element coefficients. Furthermore, this method 

does not require a large number of numerical integrations, which reduces the amount of 

calculation and saves integration time. 

On the other hand, the use of the single Helmholtz boundary integral equation may have the 

trouble of non-uniqueness of solution. To circumvent the non-uniqueness of the solution in the 

external sound field analysis, the Burton-Miller method [35] is used to combine the conventional 

boundary integral equation (CBIE) and the hypersingular boundary integral equation (HBIE) for 

acoustic analysis. However, using this method introduces singular integrals, which makes the 

calculation more difficult. This is another inherent gap in the BEM. Numerous scholars have 

conducted in-depth research on this problem [36-39]. Guiggiani et al. [40] proposed a general 

treatment of strong singular and hypersingular integrals of higher-order surface elements in 1992, 

which is suitable for any order element type. Subsequently, Rego Silva [41] applied the method to 

the acoustic BEM, which is often referred to as the singular extinction technique or the Guiggiani 

method. The method proposed by Guiggiani was improved by Rong et al. [42] to improve the 

integration accuracy when the element is distorted. Keuchel et al. [43] introduced the Guiggiani 
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method into the isogeometric analysis (IGA) to deal with strong singulars and hypersingular 

integrals in the isogeometric BEM. Chen et al. [44] utilized the Guiggiani method to process 

singular integrals in structural shape optimization based on the acoustic BEM. All of this work 

demonstrates the robust viability of the Guiggiani approach and its versatility for any type of 

element. The regularization method is another method to deal with singular integrals, which has 

a lot of representative work [45-47]. Liu et al. [45] built a system of equations of the weakly 

singular form of the hypersingular boundary equation based on the regularization method and 

certain integral identities of the static Green function. Matsumoto et al. [46] derived a set of 

equations of no singular boundary integration based on the discretization of triangular normal 

elements, which is very convenient to implement. However, the regularization method is more 

cumbersome and the implementation process is more complex, thereby singular integrals are 

directly and explicitly solved using the Cauchy principal value and the Hadamard finite partial 

integral method in this work. 

The remainder of the paper is organized as follows. The BEM for 2D acoustic problems is given in 

Section 2. Frequency decoupling techniques based on Taylor theory are used to accelerate the 

solution of the BEM for broadband analysis in Section 3, and Section 4 describes in detail the 

processing of singular integrals. Section 5 includes various numerical examples used to validate 

the proposed acceleration algorithms process, followed by the conclusions in Section 6. 

2. BEM FOR 2D ACOUSTIC PROBLEMS 

The acoustic problem is governed by the following Helmholtz equation: 

 ( ) ( )2 2p x k p x 0,	 x Ω∇ + = ∀ ∈  (1) 

where 2∇  is the Laplace operator, p(x) is the sound pressure, k is the wave number. The CBIE 

and HBIE in 2D acoustic problems are expressed respectively, as: 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )incx F x , y p y dS y x , y q y dS y x ,x
Γ Γ

+ = + C p G p  (2) 

and: 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( )

( )
inc x

x H x , y p y dS y x , y q y dS y ,
n x

x
Γ Γ

∂
+ = +

∂ 
p

C q K  (3) 

where the coefficient C(x)	=	1/2 if the source point x lies on a smooth boundary S, pinc	(x) is the 

incident sound pressure by the plane wave or point sound source, q(x) represents the derivative 

of sound pressure p(x). The expression of the kernel functions presented in the CBIE and HBIE 

are as follows: 
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where r x y= − . 

The Burton-Miller formulation [48,49] obtained by combining the CBIE and HBIE can be used to 

overcome the nonunique solution problem at a series of fictitious eigenfrequencies. The linear 

combination formulation of CBIE and HBIE is expressed as: 

 
s s

inc
inc

s s

C( x )( p( x ) αq( x )) F( x , y )p( y )dS( y ) α H( x , y )p( y )dS( y )

p ( x )
G( x , y )q( y )dS( y ) α K ( x , y )q( y )dS( y ) p ( x ) α ,

n( x )

+ + + =

∂ 
+ + + ∂ 

 

 
 (5) 

where α is the coupling constant [35]. For our formulations, the coupling constant that can be 

chosen as –i/k. 

It is easy to notice that the kernel functions and their normal derivative in the above equation 

are singular. Thus, to accurately tackle singular integrals, the Cauchy principal value and the 

Hadamard finite part integral method are utilized in this work, as detailed in Section 4. 

In this work, we use the constant element to discretize the boundary of the structure. After the 

discretization of Eq. (5), we can obtain the following matrix form: 

 inc ,= +Hp Gq p  (6) 

where the coefficient matrices H and G of the BEM are fully populated, asymmetric and 

frequency-dependent. Introducing the boundary condition, we can obtain the following linear 

system of the equation: 

 ,=Az b  (7) 

where A is the coefficient matrix, z is the unknown vector containing sound pressure or its 

normal derivative at the nodes, and b is the known vector. By solving Eq. (7), we can obtain the 

unknown vector z. Therefore, using Eq. (2) with C(x)=1, we obtain the sound pressure vector at 

several points lying on the acoustic domain, as follows: 

 
inc

f f f f ,= − +p G q H p p  (8) 

where Hf  and Gf  are the coefficient matrices with x Ω∈ . 

3. FREQUENCY DECOUPLING BASED ON TAYLOR THEORY 

We carry out Taylor expansion [50-52] of the n-th order Hankel function of the first kind at the 

fixed point z0, as follows: 

 

0

m (m )
( 1) ( 1)0
n n

z zm 0

( z z )
H ( z ) H ( z ) ,

m!

∞

==

 
  

−
=   (9) 

where: 

 
0

0

( 1)m(m )
( 1) n
n z zm

z z

d H ( z )
H ( z ) ,

dz
| =

=

 
  

=  (10) 

By replacing z and z0 with kr and kr0 respectively, we can obtain the expansion expressions of 

the Hankel function in Eq. (4). It is worth noting that obtaining an explicit expression of the m-

th order derivative of the n-th order Hankel function is very difficult. The recursive expression 

of the Hankel function is expressed as: 
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(1)
(1)(1)n

n n 1

dH (z ) n
H (z ) H (z ).

dz z
+= −  (11) 

By differentiating Eq. (11) with respect to variable x repeatedly, we can obtain the recursive 

expression of the m-th order derivative of the n-th order Hankel function, as follows: 

 

m i 1 (m 1)(m) (m i )
(1)(1) (1)

n n n 1i
i 1

( 1) (m 1)!
H ( z ) H ( z ) H ( z ) ,

z (m i )!

+ −−

+
=

− −     = −
     −

  (12) 

By substituting Eq. (12) into Eq. (9) and replacing z and z0 with kr and kr0, we can obtain the 

solution of expansion expression of 
(1)
nH (kr )  at the fixed frequency point k0. 

In this work, the impedance boundary condition q(x) ikβp(x)=  is introduced to simulate the 

sound-absorption characteristics. Thus, the integrals in the Burton-Miller formulation can be 

rewritten as a form of Taylor expansion at the fixed frequency point k0: 
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∞
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∞

=

∞

=

∞

=

−
=
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=

−
= +

−
=









 (13) 

where m
1I , m

2I , m
3I , m

4I , and m
5I  are expressed, respectively, as: 
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 (14) 

The m-th derivative of ( 1)
1zH ( z )  function used for solution of m

1I  integral in Eq. (14) is derived 

as: 

 
(m) (m 1) (m)

( 1) (1) (1)
1 1 1zH ( z ) m H ( z ) z H ( z .)

−
     = +
     

 (15) 

By substituting Eq. (13) into the Burton-Miller formulation with the impedance boundary 

condition, the expression of the Burton-Miller formulation can be reformulated as follows: 
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m
m m m 2 m m0
1 2 3 4 5

m 0

inc
inc

(k k )
C( x)p(x )(1 αikβ) I k( I I ) k (I I )

m!

p ( x)
																																	 p ( x ) α .

n( x )

∞

=

−  + + + − + + −
 

∂ 
= + ∂ 


 (16) 

By discretizing Eq. (16), we obtain the following matrix form as: 

 

m
m m 2 m0
1 2 3 inc

m 0

(k k )
k [ k k ] ,

m!

∞

=

−
+ + + + =Cp Cp I I I p P  (17) 

where: 

 

1

N

c 0

,

0 c

 
 

=  
  

C O  (18) 

and: 

 

1 1

N N

β c 0

αi .

0 β c

 
 

=  
  

C O  (19) 

We construct new matrices, as follows: 

 

0
1m

1 m
1

, m 0
,

, m 0

 + =
= 

≠

C I
I

I

%  (20) 

and: 

 

0
2m

2 m
2

, m 0
.

, m 0

 + =
= 

≠

C I
I

I

%  (21) 

Using Eq. (20) and Eq. (21) and setting 3
m m
3 	=I I% , Eq. (17) can be rewritten as: 

 ( )
m

m m 2 m0
1 2 3 inc

m 0

(k k )
k k ,

m!

∞

=

 −
+ + = 

  
 I I I p P% % % %   (22) 

In this work, we can decompose the frequency-dependent system matrix in Eq. (6) into the sum 

of the frequency-dependent scalar function multiplied by the frequency-independent system 

matrix using the Taylor expansion technique. According to Eq. (14), it is easy to notice that the 

coefficients 
m
1I
% , 

m
2I
% , and 

m
3I
%  are not frequency-dependence and need only be computed once for 

multi-frequency problems. Therefore, the coefficient matrix is not frequency-dependent. 

4. SINGULAR INTEGRAL PROCESSING 

The boundary integrals for Green functions in Eq. (14) normally can be rewritten as: 

 
x xS S S S

nonsingular singular

f ( y )dS( y) f ( y )dS( y) f ( y )dS( y) ,= +  
144424443 1442443∖

 (23) 
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where xS S\  denotes the boundary S except xS , xS  is the element containing the source point x. 

The integrals in xS S\  are nonsingular and the Gaussian integration method can be used to solve 

them effectively. However, singular integrals exist in xS , and special handing needs to be carried 

out for solving the singular integrals. Actually, only m
2I  and m

3I  contain singular integral term 

because of 
r r

0
n(x ) n( y)

∂ ∂
= =

∂ ∂
, for xy S∈ . 

In this work, the Cauchy principal value and the Hadamard finite part integral method are 

utilized to evaluate explicitly and directly the singular integrals [28,53], as shown in Figure 1. Sε  

is a semi-circle with a radius ε and εΓ   is x εS S\  . Thus, the singular term in Eq. (23) can be 

rewritten as: 

 
x ε εS Sε 0
f ( y)dS( y) lim f( y)dS( y) f ( y)dS( y) ,

Γ→

 
= + 

     (24) 

 

Fig. 1  An infinitesimal hemicircle attached to the constant element xS  

 

Suppose that the singular term of the function f(y) is D(y). By eliminating the singular part, Eq. 

(24) can be reformulated in the following form: 

 [ ]
x ε ε ε

S Sε 0 ε 0 ε 0

nonsingular singular singular

f ( y )dS( y ) lim f ( y ) D( y ) dS( y ) lim f ( y )dS( y ) lim D( y )dS( y ) .
Γ Γ→ → →

= − + +   
14444244443 14442443 14442443

 (25) 

By replacing the integral terms of m
2I  and m

3I  with m
2f  and m

3f  respectively, we obtain the 

following formulas: 

 
0

0

(m)
(1)m m

2 0
z k r

(m)
(1)m m 1

3 1
z k r

f r H (z) ,

f r H (z) ,

=

−

=

 =
 

 =
 

 (26) 

Using Eq. (25), we can obtain the solution of m
2I  and m

3I  in xS , as follows: 



J. Zhao, L.L. Chen, H.Z. Li, Z.W. Wang, W.Q. Ma, X.Y. Chen: Acoustic Analysis of Multi-Frequency Problems Using the Boundary Element 

Method Based on Taylor Expansion 

34 ENGINEERING MODELLING 36 (2023) 1, 27-47 

 

x ε ε

m m
2 2

x ε

m
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m m m m m
2 2 2 2 2

S r εε 0 ε 0 ε 0

gnonsingular d

m m m m
3 3 3 3

S r εε 0 ε 0

gnonsingular

f dS( y ) lim f D dr lim{ 2rD } lim D dr ,

f dS( y ) lim f D dr lim{ 2rD }	

Γ Γ

Γ
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=→ →

   = − + − +
   

   = − + −
   

  

 

144424443144424443 1442443

14442 3144424443 ε

m
3

m
3

ε 0

d

lim D dr ,
Γ→

+ 
444 1442443

 (27) 

where dr dS( y )=  and j jn ( x )n ( y ) 1=  in xS . For nonsingular terms, the Gaussian integration 

method is used for the solution of integrals. However, for singular terms, we still need to obtain 

the expression of singular parts m
2D  and m

3D . 

The singular part of ( 1)
0H ( z )  is 2i ln( z ) / π  , and the singular part of ( 1)

1H ( z )   is

2i /( πz ) iz ln( z ) / π− + . By differentiating the two singular parts repeatedly, the singular parts 

m
2D  and m

3D  of m
2f  and m

3f  integrals can be derived as: 

 
0m

2
0

2i
ln(k r ), m 0

πD ,

O(r ), m 0


=

= 
 ≠

 (28) 

and: 

 

1 2 0
0 0

m 2 2
3 0 0

(m 1)m 2
0

ik2i
k r ln( k r ), m 0

π π

2i i
D k r ln( k r ), m 1 ,

π π

2i
( 1) k r m!, m 2

π

− −

− −

− + −


− + =



= + =



− − ≥


 (29) 

By investigating Eq. (28), we can see that the term m
2f  is weakly singular for m=0, otherwise 

nonsingular. However, the term m
3f   is hypersingular. By bringing Eq. (28) into the first 

formulation in Eq. (27), the expressions of 0
2g  and 0

2d  can be derived as: 

 
[ ]

0
2

0
2 0

g 0,

2iL
d ln(k L/ 2) 1 ,

π

=

= −
 (30) 

where L is the length of the element. 

By bringing Eq. (29) into the second formulation in Eq. (27), the expressions of m
3g  and m

3d  

can be derived as: 

 
(m 1)m m

3 0
ε 0

4i 1
g lim ( 1) k m! ,

π ε

− +

→

 
= − 

 
 (31) 

and: 
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[ ]

[ ]

0
0

ε 00 0

m
3 02 2ε 0

0 0

(m 1) (m 1)m m
0 0

ε 0

ik L8i 4i
ln(k L / 2) 1 lim , m 0

πk L π πk ε

8i iL 4i
d ln(k L / 2) 1 lim , m 1 .

ππk L πk ε

8i 4i 1
( 1) k m! lim ( 1) k m! , m 2

πL π ε

→

→

− + − +

→


+ − − =


 −

= + − + =



  − − − ≥   

 (32) 

5. NUMERICAL EXAMPLES 

In this work, two numerical examples are utilized to investigate the accuracy of the Taylor 

expansion algorithm. The computation is implemented in a Fortran 90 self-programming 

program and carried out on a desktop computer with 4GB of RAM and an Intel Core i5 CPU. 

OpenMP technology is used for parallel computing to improve computing efficiency, and the 

parallel parameter is 6. The parallel parameter here refers to the number of parallel threads. In 

this section, 10 Gaussian quadrature points are utilized to solve singular integrals, and only 6 

Gaussian quadrature points are required for non-singular integrals. 

5.1 ACOUSTIC SCATTERING FROM AN INFINITELY LONG RIGID CYLINDER 

The scatterer of the acoustic scattering problem is an infinitely long rigid cylinder with Neumann 

boundary conditions, which can be simplified to a circle as shown in Figure 2. The incident 

direction of the incident plane wave is parallel to the positive direction of the x - axis. The radius 

r0 of the circle is 1	m and the center of the circle is at (0	m,	0	m). The circle is divided into 300 

elements using the constant boundary element, and the observation point is at the point (2	m,	0	

m). The remaining parameters are shown in Table 1. 

Table 1  Related parameters of the circle 

The	density	of	the	air	medium	 ρf	 1.21	 kg/m3	

The	speed	of	the	sound	 cair	 343	 m/s	

The	frequency	step	 fstep	 1.0	 Hz	

 

Fig. 2  Acoustic scattering from an infinitely long rigid cylinder with a radius of r0 
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Subsequently, the sound pressure incp  of the incident plane wave is defined as: 

 
ikr cosθ

inc 0p p e ,=  (33) 

where p0=1 is the amplitude of the incident plane wave, θ is 0 because the incident wave 

propagates in the forward direction along the x - axis. The analytical expression [54] for the 

distribution of the scattering sound field of the infinitely long rigid cylinder is as follows 

 ( )
( )n 0 0 n 1 0n (1)

n n(1)(1)
n 0 0 0n 0 n 1

nJ kr kr J ( kr )
p r ,θ ε i H (kr )cos(nθ )

nH (kr ) kr H (kr )

∞
+

= +

−
= −

−
  (34) 

where the number of the truncated term is 50. εn denotes the Neumann symbol, ε0	=	1 for n	=	0, 

while εn =	2 for n	>	0. 

Relative errors in the -norm form are expressed as follows: 

 

1/ 2 1/ 2
N N

2 2
n i e i e i

i 1 i 1

e p ( x ) p ( x ) ( x ) ,pΓ

= =

   
=  −   
   
   
   (35) 

where pe(xi) represents the exact solution for the sound pressure at the point in the domain, pn(xi) 

represents the numerical solution of sound pressure, xi is the position of the calculation point in 

the domain, N is the number of calculated points. This subsection takes 360 points evenly 

distributed on the boundary of the circle with a radius of 2	m in Figure 2 as reference points for 

error calculation. 

Firstly, the comparison of the numerical solution based on Taylor expansion with the analytical 

solution at the observation point (2	m,	0	m) is shown in Figure 3. The sound pressure results are 

solved using the BEM based on Taylor expansion in four frequency ranges, such as [2,	50] Hz, [50,	

100] Hz, [100,	150] Hz and [150,	200] Hz. In this work, the frequency step is 1	Hz and the fixed 

frequency expansion point k0 in the frequency range low upf , f     is assumed to be 

low up( f f ) / 2+  . Herein, “Taylor_3” represents the numerical solution obtained using BEM 

based on Taylor expansion with TM=3 expansion terms. Likewise, “Taylor_5”, “Taylor_7” and 

“Taylor_10” represent the numerical solution with TM=5, 7, 10 expansion terms, respectively. It 

can be observed from the figure that the sound pressure values in different frequency bands are 

inconsistent, and the sound pressure values obtained by the numerical method and the 

analytical method are basically similar in the same frequency band. In addition, the expansion 

point is 26 Hz within [2,	50] Hz, and the farther away from the expansion point, the greater the 

error. Therefore, the greater the difference in sound pressure values for different expansion 

terms in the [40,	50] Hz range. And the value of the “Taylor_10” is closest to the sound pressure 

value obtained by the analytical method, which means that the larger the Taylor expansion term, 

the closer the numerical solution is to the analytical solution. Further relative error analysis is 

shown in Figure 4. In this work, Eq. (35) is used for the relative error analysis. It can be observed 

from the figure that the larger the Taylor expansion term in the same frequency band, the smaller 

the relative error. Therefore, 10 Taylor expansion terms are utilized for the Taylor expansion in 

the future. The results prove the accuracy and validity of the algorithm proposed in this work. 

2
L
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(a) 2-50	Hz	 (b) 5-100	Hz	

 

(c) 100-150	Hz	 (d) 150-200	Hz	

Fig. 3  Relationship between sound pressure and frequency in different frequency bands obtained using the 

analytic method and the BEM based on Taylor expansion 
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Fig. 4  The relative error between the numerical and analytical solutions of sound pressure 

 

 

Fig. 5  The CPU time for wideband computing in terms of DOFs 

 

It is necessary to investigate the CPU time used by the present algorithm and the CBEM, as shown 

in Figure 5. The frequency range is set to [100,	200] Hz. The number of sweeps is set to 1000. 

Here, "CBEM" indicates that the conventional BEM was used to solve the full-order system of 

equations repeatedly. From the figure, it can be observed that the CPU time required to solve the 

system of equations using the CBEM is significantly higher than that required using the BEM 

based on Taylor expansion. Thus, the decoupling method effectively reduces the computation 

time for wideband calculations. 
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Fig. 6  Distribution of sound pressure at different frequency points 

 

At six different computing frequency points of 50,	150,	250,	350,	 450, and 550	Hz, the sound 

pressure at the boundary of the circle is shown in Figure 6. At the same frequency points, the 

contour of the sound pressure generated by the cylindrical scattering on the surface is shown in 

Figure 7. Herein, the sound field analysis is performed using the BEM based on Taylor expansion. 

For the BEM based on Taylor expansion, 25,	 100,	 200,	 300,	 400, and 500	 Hz are considered 

frequency expansion points used for the solution at six different frequencies of 50,	150,	250,	350,	

450, and 550	Hz. From the two figures, it can be seen that the sound pressure results at different 

frequencies are inconsistent. When performing broadband analysis, the coefficient matrix has to 

be repeatedly computed at every frequency point, which is very time-consuming. Therefore, it is 

necessary to develop efficient and fast calculation methods for frequency sweep analysis. 

 

 

Fig. 7  The contour of sound pressure at different frequency points 
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5.2 ACOUSTIC SCATTERING FROM THE TUNING FORK-SHAPED SOUND BARRIER 

With the rapid development of the economy, the number of cars has increased significantly. 

Although the significant increase in the number of cars has brought convenience to people, it has 

also brought serious traffic noise pollution on the other hand. To obtain effective noise reduction 

performance, there has been a gradual increase in wide use of sound barriers. Therefore, it is 

necessary to carry out the analysis of the noise reduction performance of the acoustic barrier. 

Next, we will consider the design domain of the tuning fork-shaped sound barrier model to 

demonstrate the effectiveness of the proposed program in this work, as shown in Figure 8. In 

this subsection, we use the constant element to discretize the surface boundary of the acoustic 

barrier into 910 elements. A unit point sound source is set at (0	m,	 1	m), and other related 

parameters are shown in Table 2. The purpose of this example is to evaluate the performance of 

the broadband computing algorithm based on the Taylor expansion. 

 

Fig. 8  The design domain of the tuning fork-shaped sound barrier 

 

Table 2  Related parameters of the sound barrier 

The	density	of	the	air	medium	 ρf	 1.21	 kg/m3	

The	speed	of	the	sound	 cair	 343	 m/s	

The	thickness	of	the	upper	part	of	

the	barrier	
d1	 0.1	 m	

The	thickness	of	the	lower	part	of	

the	barrier	
d2	 0.2	 m	

 

Figure 9 shows the real part of the sound pressure obtained by the BEM based on Taylor 

expansion at calculated points (16	m,	2	m). The entire frequency range of 1-300	Hz is divided into 

six frequency bands, such as [1,	50] Hz, [50,	100] Hz, [100,	150] Hz, [150,	200] Hz, [200,	250] Hz, 

[250,	300] Hz. Moreover, the expansion point k0 is located in the middle of the sub-interval, and 

the frequency step is set to 1	Hz. It can be observed from the figure that the real part of the sound 

pressure based on Taylor expansion in different frequency bands is inconsistent. However, the 

sound pressure results for different expansion terms are basically consistent in the same 

frequency band (except in the [1,	 50] Hz). This is mainly because the results of different 

expansion terms are frequency-dependent, and the more accurate the results become as the 

frequency increases. The real part of the sound pressure gradually becomes smaller as the Taylor 

expansion term increases within the frequency range [1,	50] Hz. In addition, the expansion point 
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is 25	Hz within [1,	50] Hz, and the farther away from the expansion point, the greater the error. 

Therefore, the greater is the difference in sound pressure values for different expansion terms 

in the [40,	50] Hz range. The imaginary part and amplitude of sound pressure obtained by using 

BEM based on Taylor expansion at calculated points (16	m,	2	m) are studied in Figure 10 and 

Figure 11, and the variation trend is similar to Figure 9. The results also demonstrate the 

accuracy of the program proposed in this work. 

 

 

Fig. 9  The real part of the frequency sound pressure obtained by using BEM based on Taylor expansion at 

calculated points (16 m, 2 m) 

 

 

Fig. 10  The imaginary part of the frequency sound pressure obtained by using BEM based on Taylor 

expansion at calculated points (16 m, 2 m) 
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Fig. 11  The amplitude of the frequency sound pressure obtained by using BEM based on Taylor expansion 

at calculated points (16 m, 2 m) 

It is worth noting from Figure 9 to Figure 11 that there is a slight deviation in the sound pressure 

values at 220	Hz. Therefore, we will next compare the sound pressure values obtained using the 

CBEM and the BEM based on Taylor expansion in the [200,	250] Hz range, as shown in Figure 12. 

In Figure 12, “CBEM” denotes conventional BEM used to solve the full-order system of equations 

repeatedly. We can find that the sound pressure results obtained using the CBEM method and 

the BEM with the Taylor expansion are basically the same at 220	Hz and around the expansion 

point. Thus, these results demonstrate the accuracy of the proposed algorithm. 

 

 

Fig. 12  Comparison of sound pressure between the BEM based on Taylor expansion and the traditional 

BEM at frequency range [200,250] Hz 

It is necessary to investigate the computational efficiency of the proposed technique, as shown 

in Figure 13. The frequency range is set to [100,	200] Hz. Figure 13 shows the computational 
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time for solving the system of BEM equations at 1000 different frequencies. From the graph, it 

can be observed that the CPU time required to solve the system of equations using the CBEM is 

significantly higher than that required using the BEM based on Taylor expansion. 

The Taylor expansion is used to separate the frequency variable from the Hankel function to 

obtain the frequency-independent coefficient matrix of boundary element. Therefore, this 

operation avoids the repeated calculation of the coefficient matrix, which can effectively improve 

computational efficiency. 

 

Fig. 13  The CPU time for wideband computing in terms of DOFs 

6. CONCLUSIONS 

In this work, acoustic scattering problems are analyzed using the BEM, and an accelerated 

computing technique is proposed. The BEM only needs to discretize the structural surface for 

the external acoustic field problems. In addition, the Burton-Miller formulation is utilized to 

eliminate virtual eigenfrequencies. The Cauchy principal value and the Hadamard finite part 

integral method are utilized to solve the singular integrals. This paper utilizes the Taylor 

expansion to separate frequency-dependent terms from the integrand function, which 

eliminates the frequency dependence of the boundary element coefficient matrix. Therefore, the 

numerical integration is restricted to the frequency-independent part, reducing the 

computational effort. 

Although Taylor expansion overcomes the inherent drawback of frequency dependence, the 

order of the whole system equation is not reduced, and the state space dimension of the system 

equation remains unchanged. To solve this problem, we will introduce model order reduction 

technology (MOR) in the future. 
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