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SUMMARY 

In this paper, the simplest directional wind spectrum description is given using surrogate bivariate 

polynomial radial basis functions (PRBF) with L1 norm smoothed by dense boundary points distribution, 

which enables an accurate description of the geometry and the calculation of the volume below the 

observed surface when belonging double integral is known. For that purpose, the direct solution of double 

integral below the descriptive surface is given for bivariate polynomial RBFs with integer exponents, 

which is examined for accuracy on two examples, for Franke’s 2D function and upper hemisphere. After 

proven accurate in those examples, the direct description of the directional wind spectrum and the 

calculation of the joint density function of the wind spectrum is done in the paper, thus proving PRBFs as 

an efficient method for wind spectrum description. In that way, it is possible to calculate the joint density 

function (JDF) of the actual measured directional wind spectrum analytically, instead of the theoretical 

calculations used so far. 

KEYWORDS: RBF interpolation; L1 norm; analytical double integral solution; directional wind 

spectrum; joint density function. 

1. INTRODUCTION 

Radial basis function neural networks (RBFNN) are a basic technique for solving geometry 
description problems based on meshless data organization. Their reconstruction properties make 
them useful in dealing with the global description of artificial objects of complex form, to rough 
data sets from various real-world measurements [1], [2], and [3]. Standard RBF definitions, 
mostly used in practice, contain Euclid's L2 norm squared as an argument, in order to ensure 
positive definiteness connected with the invertibility of the interpolation matrix. Their 
applicability and computational properties have been investigated in theory by many authors, 
such as in [4] to [9], with belonging calculation improvements investigated in [10] for constructive 
L2 RBF and machine learning in [11]. 

Since RBFs with L2 norm have some special properties that make them favorable over other 
norms as RBF arguments, other norms like L1 norm are not very much used or covered in theory. 
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Nevertheless, it is shown by Ban et al., [12], that global ship hull geometry description is possible 
using a single radial basis function based on the L1 norm, showing their main property of geometry 
features extraction, since they don't suffer from fill distance limitations of data site points. That 
feature makes radial basis functions with L1 norm applicable in directional wind spectrum 
description, as will be shown in this paper. 

In order to solve the problem of smooth surface reconstruction problem for RBFs with L1 norm, 
the smoothing method using dense points description of surface boundaries will be used in this 
paper, thus enabling surface description using RBF in polynomial form with integer exponents. 
Simultaneously, Runge phenomenon of boundary oscillations is reduced, which is investigated by 
many authors, like Fornberg and Zuev, [13], and Boyd, [14], who observed it in many ways with 
various solutions. Moreover, as it is shown in [15] and [16], complete analytical solutions to 2D 
computational geometry problems are available using the composition of cubic and linear 
Polynomial RBFs, solving Runge and Gibbs phenomena and intersection problem. 

Consequently, RBF forms that will be used for describing directional wind spectrum surface S, 
obtained from measured histogram data, are those basis functions with the polynomial form with 
integer function exponents that could enable the direct solution of double integral below 
directional wind spectrum surface: 

 ( )
maxv2π

0 0

V f ,v d dvϕ ϕ=    (1) 

where ϕ is wind direction from 0 to 360°, and v is wind speed from 0 to vmax. 

Therefore, the polynomial form of RBFs with integer main function exponent and L1 norm as the 
argument will be examined in this paper, giving double integral under described surface S of the 
type shown below as: 

 ( )
S

f x a , y b dxdy− −  (2) 

After solving double integral in (2), actual normalized joint density function (JDF), fXY, for 
measured directional wind spectrum can be calculated by dividing surrogate L1 norm RBF 
(L1RBF) directional wind spectrum description f(ϕ, v), defined for wind direction ϕ and with 
speed v, with calculated volume V below spectrum surface as: 

 
( ) ( )

( )
MAX

XY v2π

0 0

f ,v f ,v
f

V
f ,v d dv

ϕ ϕ

ϕ ϕ

= =

 

 (3) 

The integration results of multiquadric and polynomial radial basis functions defined with L1 
norm will be first tested for theoretical Franke's function, [17], with a shape similar to the 
directional wind spectrum, then for the description of an ideal geometry of the upper hemisphere, 
and then applied in joint density function (JDF) calculation for actual directional wind spectrum. 
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2. RADIAL BASIS FUNCTIONS DEFINITION 

2.1 GENERAL 

Radial basis functions are the direct solution to scattered data interpolation problems with 
foundations in statistics, [18]. They were usually used as activation functions in direct feed-
forward neural networks (FF-NN), but they are the basis of meshless methods, also, because they 
don’t need mesh organization of their data site X, with belonging input data set equal {xj}, j = 1, …, 
N, x ∈ IRd, and output data set {zj}, j = 1, …, N, z ∈ IR. Their applicability in ship geometry 
description using global interpolation was explored in [19], where multiquadric RBFs (MQ RBF) 
were found useful for that purpose. In this paper, we are interested in a basis function f: Ω → IR 
defined on some region Ω ⊆ IRd where d is the dimension of the problem. 

In general, the RBF statement can be described as a weighted sum of radial basis functions 
translated around the points ti called centers, whose number depends on the mathematical 
procedure chosen for object representation. Mathematically, an RBF network as a linear 
combination of certain basis functions is defined with: 

 ( ) ( )
O O O

i i i i i i

i 1 i 1 i 1

f̂ ( x ) w B w x w φ x ,tΦ
= = =

= = =    (4) 

where {xj}, j = 1, …, N; x ∈ IRd is the input data set, {Bi} are basis functions, {Φi} are radial basis 
functions, {ti} are RBF development centers, with i = 1, …, O, where O is the number of centers, {wi} 
are RBF network weight coefficients, φ is radial basis function based on the Euclidian norm L2 

between input data and centers, and )(ˆ xf  is generalized interpolation/approximation function. 

The main advantage of RBFs is that they are the solution of scattered data interpolation problem 
that is obtained by determination of weight coefficient vector/matrix w, using inversion of 
interpolating matrix H as: 

 
1 z−= ⋅w H  (5) 

where w = {wi} is weight coefficients matrix/vector, z = {zj}∈ IR is output data set with j = 1, …, N, 
for belonging input data set as x = {xjd}, j = 1, …, N, H = [Hji] is interpolating matrix with elements 

Hji = Φ||xj – xi||, and d is the dimensionality of the problem. 

Generalized multiquadric RBFs (MQ RBF), founded by Hardy, [24], are written in the form: 

 ( ) { }
k

2 2 2
i i

i

f ;c ;k w r c , k 2IN= + ∉x  (6) 

where r is the L2 norm, which can be written as: ( ) ( )
1

2 2 2
2 i ir L x x y y ≡ = − + −  

. 

It is obvious from (9) that r is squared in order to eliminate the 1/2 exponent in the L2 norm in 
the MQ RBF definition. It means that an additional auxiliary exponent γ = 2 is introduced in the 
RBF definition to reduce the square root in the MQ RBF definition. Therefore, a more general MQ 
RBF definition with auxiliary exponent γ can be written as: 

 ( ) ( )
k

γ γ 2
i i

i

f r ;c ;k ,γ w r c , k 2 IN= + ∉ ⋅  (7) 

Therefore, the main goal of all radial basis function selections is to ensure the inversion of the 
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global interpolating matrix H. Several RBF types are developed in theory with the main goal to 
have a positive definite radial basis with different function types: strictly positive definite, 
completely monotone, multiply monotone functions, and conditionally positive definite functions. 
For those classes of RBFs, the usual proposition is that they follow Schoenberg-Menger theorem, 

[20], and Micchelli’s theorem, [21], which require an L2 norm to be squared with 2
2L  to obtain 

conditionally positive semi-definite matrix and ensure its invertibility, in the form: 

 
2

ji j i 2
H = −x x  (8) 

Moreover, the ball-in-the-cone condition can be fulfilled in such a way, but using the L2 norm also 
leads to the main limitation of RBFs with L2 norm i.e., the existence of fill distance between points 
hX,Ω limitation in data site points arrangement. It means that data site X cannot be freely chosen 
for RBFs with L2 norm, and that makes major difficulties in the description of geometries with 
discontinuities or limits integration with grouping error in a point effect for such descriptions. 

The possibility of other norm choices was investigated by several authors, Baxter [22], and Dyn 
et al. [23], where the choice of L1 norm proves to give a singular matrix for a very simple set of 
points for surface description problems, thus assuming elimination of possible usage of L1 norm 
for RBF definitions. On the other hand, using the L1 norm erases the limitation of the fill distance 
between points hX,Ω for surface description problems, thus improving the convergence of the 
interpolation. It is also shown in Fasshauer, [20], and in Ban et al., [12], that the well-known 
problem of interpolation matrix inversion for simple data set X = {0 1, 0 1} is possible for random 
choice of points or slight imperfection of results, as is usual for real geometries, and thus 
eliminating that problem. 

2.2 RBF WITH L1 NORM 

2.2.1 GENERAL 

Standard RBFs have an L2 norm in order to ensure positive definiteness and invertibility of 
interpolation matrix H, and it can be achieved by squaring the L2 norm only. This leads to the 
existence of fill distance between points hX,Ω limitation in data site points arrangement as the 
greatest limitation of L2 norm-based RBFs in the surface’s reconstruction. On the other hand, 
when RBFs with L1 norm are used to fill the distance between points hX,Ω limitation does not exist 
with: 

 X ,h 0Ω →  (9) 

It means that the only necessary requirement for RBF interpolation with L1 norm to be non-
singular is that all points are distinguished from each other with: 

 1 2 3 N 1 NX X X ... X X−≠ ≠ ≠ ≠ ≠  (10) 

Therefore, data site X used for the description of some arbitrary geometry with discontinuities 
can be freely chosen, with denser descriptions near discontinuities. That is one of the main 
reasons why RBFs with L1 norm should be used, together with the possibility of obtaining RBFs 
in polynomial form. Except above, interpolation matrix H is much simpler than for L2 norm, thus 
assuring invertibility and faster calculation. Moreover, in the case of polynomial RBFs with shape 
parameter c set to zero, the symmetric matrix is obtained with the main diagonal equal to zero, 
too. Also, it is shown by Ban & Basic in [16] that polynomial RBFs are directly integrable for 2D 
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computational geometry problems, and thus they are assumed to have an appropriate form for 
3D computational geometry solutions, too. 

Undesired absence of generalization smoothness for polynomial and multiquadric RBFs with L1 
norm and integer exponents leads to non-smooth and bumpy surface descriptions, that is solved 
by the dense distribution of boundary points, with two types of boundary points distributions 
examined: equally and randomly distributed points. 

2.2.2 MQRBF WITH L1 NORM 

After reducing exponents and setting γ = 1, simpler multiquadric RBFs for curve and surface 
descriptions are obtained. This MQRBF form has a polynomial form significantly simpler than (7) 
above and will be examined for surface geometry descriptions. We can then write MQRBF with L1 
norm as: 

 ( ) ( )
N

β

i i

i 1

f w c

=

= − +x x x  (11) 

Opposite to the multiquadric definition with L2 norm squared 2
2L , where the choice of data site 

does not influence RBF definition, the choice of data site X for L1 norm does influence the 
characteristics of RBF definition. Therefore, it is necessary to examine the influence of data site 
points distribution on RBF definitions. 

According to theory, the MQ RBF definition for L1 norm and equally distributed points is: 

 ( ) ( )
N

β

i i

i 1

f w c

=

= − +x x x , β IR+∈ \{1} (12) 

This fact is well described in theory, [21], where the linear multivariate description is not possible 
for equally distributed data points. Fortunately, that can be changed using a random distribution 
of data points X, where MQ RBF changes to: 

 ( ) ( )
N

β

i i

i 1

f w c

=

= − +x x x , +∈ IRβ  (13) 

In this way, MQ RBF becomes applicable for solving double integral enabling usage of whole space 
of integer function exponents, β ∈ IN, when the non-equidistant distribution of input points is 
used. 

The form of MQ RBF that will be used for further calculations will be: 

 ( ) ( )
β

i i i

i

f w x x y y c= − + − +x  (14) 

2.2.2 POLYNOMIAL RADIAL BASIS FUNCTIONS WITH L1 NORM 

It is obvious from the above that it is possible to obtain MQ RBF in polynomial form. But, as the 
polynomial form is obtained anyway, there is no need for c to be included in the brackets, in (13). 
It is possible to leave shape parameter c out of the brackets, thus obtaining polynomial RBFs 
(PRBF) defined with L1 norm. Regarding main function exponent β in MQ RBF with L1 norm, it is 
assumed that PRBF has a computationally efficient and robust form too, together with high 
precision, as shown in [12]. 
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Polynomial RBFs with L1 norm are generally defined with: 

 ( )
N

β
i i

i 1

f w c

=

= − +x x x  (15) 

But, except for dimensionality d of the problem, the definition of polynomial radial basis functions 
depends on the distribution of input points also, as shown in [12]. So, in the case of equidistant 
points, PRBF definition is: 

 ( )
N

β
i i

i 1

f w c

=

= − +x x x , ( )β IR\ 2 IN s 1∈ ⋅ − +  (16) 

where s = d – 1. 

It can be concluded from above that the reason for integer exponent values β to become 
acceptable for PRBFs is because they have L1 norm, thus avoiding squaring of the norm as used in 
standard RBF definitions with L2 norm, directed by Schoenberg-Menger’s theorem for 
conditionally positive semi-definite matrices, [20], similar to MQ RBFs. Moreover, for known 
interpolation problem with the singularity of simple four equidistant points, described in [12] and 
[20], it can be decided easily that it emerges because of the definition of 3D PRBFs and its 
limitation to odd integer values, only, as shown in (16). 

On the other hand, in the case of non-equidistant points, where low discrepancy Van der Corput 
sequences like in Halton points are used, the definition of the 3D PRBF changes to: 

 ( )
N

β
i i

i 1

f w c

=

= − +x x x , β IR+∈  (17) 

showing the dependence of the RBFs with the L1 norm definition of the input data site. 

Depending on the dimensionality of the problem, equation (17) can be rewritten for 2D and 3D 
as: 

 ( ) ( )
N

β

i i i

i 1

f w x x y y c

=

= − + − +x  (18) 

where equation (18) represents the main function type in the double integral (1) to be solved. 

Therefore, the polynomial RBFs (PRBF), together with multiquadric RBFs (MQ RBF), can have all 
integer exponents from space of natural numbers IN and can be used for direct analytical solving 
of computational geometry problems like double integrals. Nevertheless, arbitrary surface 
description using RBFs with L1 norm usually suffers from poor generalization properties. It will 
be shown in the next section that can be improved by the dense distribution of boundary input 
points. The results will be then tested for 3D Franke's function and theoretical hemisphere in the 
next sections. 

2.3 SURFACE TENSION USING DENSE DISTRIBUTION OF BOUNDARY POINTS 

One of the simplest methods of surface smoothening is adding points at surface boundaries, as 
Ban & Ljubenkov have shown in [12], where the actual ship's hull form is described. Moreover, it 
is shown in [12] that smoothness of the surface description can be achieved using the global 
meshless description of hull form using single polynomial RBF with the dense distribution of the 
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input points on the boundaries of the description and at the inner discontinuities of the geometry. 
After adding boundary points, the number of points in input data set X changes to: 

 S B DN N N N= + +  (19) 

where NS is the number of points describing the smooth part of the description and NB is the 
number of boundary points and ND is the number of points used for the description of inner 
discontinuities. 

In order to test the properties of radial basis functions with L1 norm in the global 3D meshless 
description, modified 3D Franke's function with all positive values is described here. In that way, 
modified 3D Franke's function simulates directional wind spectrum characteristics that have all 
positive values, also. Two types of boundaries description are examined here for 3D Franke's 
function, described using MQ RBFs and PRBFs with β = 2.0 and NS = 1089 points: with randomly 
and equally distributed boundary points, NB. The results show that the accuracy of the description 
does not rise significantly with more boundary points added in the description, or after some 
number of added points NB is reached, but a larger number of added boundary points give better 
smoothness of the description. Also, there is not much difference between the boundary points 
distribution chosen, i.e. the distribution of points does not influence the result significantly. 

 

Fig. 1  MQ RBF description of 3D Franke's function with L1 norm, β = 2.0, and equidistant boundary points 

Figure 1 shows that an acceptable description regarding smoothness is obtained using dense 
boundary points distribution in the description of 3D Franke's function for MQ RBF with L1 norm 
and exponent β = 2.0. Although the local accuracy value Errmax = 5⋅10-3 is good, it is not matching 
the required value of 10-3. Regarding global accuracy, a very good value is obtained, with RMSE = 
2.873⋅10-6. 

According to the above, multi quadrics and polynomial RBFs with L1 norm have the simplest 
definition forms, and they will be suggested as the solution to 3D computational geometry 
problems with RBFs. They both have polynomial form when integer function exponent is applied 
and therefore could be easily integrated, i.e. the solution of respective double integral below the 
described surface should be obtained directly. Moreover, the simplest polynomial RBF that can be 
used for surface description is bivariate quadratic polynomial RBF with: 

 ( )
N

2
i i

i 1

f x w c

=

= − + x x  (20) 

This description, therefore, changes from C2 to C1, giving quasi-smooth interpolation, where 
smoothness is obtained using dense surface boundary description. Thus, polynomial RBFs with 
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integer exponent β = 2.0 can be used for solving double integral for volume calculation also, since 
they have a very simple definition. 

3. ANALYTICAL SOLUTION OF DOUBLE INTEGRAL BELOW L1 NORM RBF 

SURFACE 

For the complete analytical solution of the 3D computational geometry description problem, 
belonging to double integral must be solved, as well as appropriate smooth surface description 
achieved, simultaneously. It is shown in the previous section that a smooth description of surfaces 
can be obtained using RBFs with L1 norm in polynomial form smoothed using dense surface 
boundary description. Therefore, multiquadric (MQ RBF) and polynomial (PRBF) radial basis 
functions are the best candidates for the solution of double integral below the surface. Among 
those two, MQ RBF has a more general form with shape parameter c included inside brackets with: 

 ( ) ( )
β

i i i

i

f x , y w x x y y c= − + − +  (21) 

Belonging definite double integral for MQRBF then simply represents volume V below-described 
surface bounded by a ≤ x ≤ b and d ≤ y ≤ e. 

 ( )
y e x b

β

i i i

iy d x a

V w x x y y c dxdy

= =

= =

= − + − +   (22) 

In order to solve the above indefinite integral for the segment i, the single indefinite integral for 
variable x is to be solved first, in the form: 

 
β

x i yI x x c dx = − +
   (23) 

with cy = |y – yi| + c. 

The general solution of integral in (23), for integer exponents, is: 

 
( )

( ) ( )( ) ( ) ( )( )
β 1 β 1

x i y i i y i

1
I x x c sign x x 1 x x c sign x x 1

2 β 1

+ + 
= − + + − − + − + − + +  

 (24) 

The simplest way to obtain the required double integral solution is using L1 norm multiquadric 
RBF with β = 2, where the bivariate quadratic function is obtained as: 

 ( )= − +
2

x i i y

i

I w x x c dxdy  (25) 

Belonging solution for quadratic multiquadric function in (24) with β = 2 can be then obtained 
from (25) as: 

 ( ) ( )( ) ( ) ( )( )
3 3

x i y i i y i

1
I x x c sign x x 1 x x c sign x x 1

6

 
= − + + − − + − + − + 

 
 (26) 

The above solution for x, with substituting constant cy and separating variable y, is then: 

 ( ) ( )( ) ( ) ( )( )
3 3

x i i i i i i

1
I x x y y c sign x x 1 x x y y c sign x x 1

6

 
= − + + − + − − + − + − + − + 

 
 (27) 
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After that, it is necessary to integrate for y with basic integral having a similar form as the result 
for x in (26) with: 

 
3

y i 1I y y c dy = − +
   (28) 

where c1 = – x + xi + c for the first part of the solution in (28) and c1 = x – xi + c in the second part. 

The solution of the above integral (28), according to the solution in (24), is: 

 ( ) ( )( ) ( ) ( )( )
4 4

y i 1 i i 1 i

1
I y y c sign y y 1 y y c sign y y 1

8

 
= − + + − − + − + − + 

 
 (29) 

After replacing c1 in (29), the overall solution of double integral below the surface for bivariate 
quadratic polynomial RBF, shape parameter c is not inside the brackets, and polynomial RBF can 
be taken as multiquadric RBF with c = 0. Therefore, c is zero for polynomial RBF and we obtain 
polynomial RBF that can be used for surface description as bivariate quadratic polynomial RBF, 
(20), with the simplest solution possible. 

The final solution for bivariate quadratic polynomial RBF can be obtained as: 

DOUBLE INTEGRAL SOLUTION FOR BIVARIATE QUADRATIC POLYNOMIAL RBF 

 

( )( ) ( )( )( )

( )( ) ( )( )( )

( )( ) ( )( )( )

( )( ) ( )( )( )

4

i i i i i

i

4

i i i i

4

i i i i

4

i i i i

1
I w sign x x 1 sign y y 1 y y x x

48

sign x x 1 sign y y 1 y y x x

sign x x 1 sign y y 1 y y x x

sign x x 1 sign y y 1 y y x x


= − − − − − + − +



+ − + − − − + + −

+ − − − + − − +


+ − + − + − + − 





 (30) 

Therefore, the direct solutions of double integral below the surface are obtained in the required 
polynomial form. 

Finally, it is then necessary to insert the boundaries of volume double integral (22), and only the 
case for polynomial RBF will be shown here. If we observe the solution in (30), it is obvious that 
the sign function changes with center point values xi. Nevertheless, if one widens boundaries of 
observed double integral [xa, xb, ya yb] for some small value, let 's say dX ≡ {dx, dy} → 0, one gets 
calculation area [xa – dx xb + dx, ya – dy yb + dy]. 

In that way, the sign function reduces all parts of the integral solution (31) except one, for each 
combination of boundaries xa – dx, xb + dx, ya – dy, yb + dy, for the whole center point data set. As 
the result, the solution of definite integral (22), after inserting boundaries, becomes: 

 

( ) ( )

( ) ( )

4 4

i a i a i a i b i

i

4 4

b i a i b i b i

1
I w 4 y y x x dx dy 4 y y x x dx dy

48

4 y y x x dx dy 4 y y x x dx dy


= − + − + + + + − + + − + +




+ − − + + + + − + − + + 




 (31) 

And after reducing, the final solution is: 



D. Ban, S. Perišić, J. Barle: Directional Wind Spectrum Description using Bivariate L1 Norm RBFs 

108 ENGINEERING MODELLING 36 (2023) 1, 99-114 

 

( ) ( )

( ) ( )

4 4

i a i a i a i b i

i

4 4

b i a i b i b i

1
I w y y x x dx dy y y x x dx dy

12

y y x x dx dy y y x x dx dy


= − + − + + + + − + + − + +




+ − − + + + + − + − + + 




 (32) 

This solution of the double integral is used for further calculations in this paper. 

4. RESULTS 

Before giving directional wind spectrum description with belonging joint probability function, the 
accuracy of direct, analytical solution of double integral below the surface using 3D PRBF will be 
examined here, first, for two test examples: Franke's 3D function and upper hemisphere. 

4.1 EXAMPLE 1: FRANKE’S 3D FUNCTION 

The description of Franke's 3D function surface is a usual test for 3D reconstruction methods as 
described before. In order to show the possibilities of RBF description with L1 norm function 
arguments, polynomial RBF results of integration (31) are examined here, and compared with 
direct solutions of 3D Franke's function double integral, in Table 1. Modified 3D Franke's function 
is used here as shown in Figure 1, with the last term added instead of subtracted defined as: 

( )

( ) ( ) ( ) ( ) ( )
( ) ( )

2 2 2 2 2

2 2

9x 2 9 y 2 9x 1 9x 7 9 y 39 y 1

9x 4 9 y 74 4 49 10 4 4

Ff x , y 0.75 e 0.75 e 0.5 e 0.2 e

     − − + − −+
     − − − − − −  − − − −            = ⋅ + ⋅ + ⋅ + ⋅  

After direct analytical integration, the solution of double integral for modified Franke's 3D 
function over integration area [0 1; 0 1] is 0.26072 (m3). 

Table 1 shows the results regarding root mean square error (RMSE), maximal absolute error 
(Errmax), and volume below 3D Franke's function, described using smoothed polynomial RBF with 
L1 norm and β = 2 with dense distribution of boundary points, for a range of input points NS and 
additional equidistant boundary points NB. As mentioned before, the calculation boundaries of the 
integration are widened for a small value to obtain the solution (34), to an area [0 – 10-10 1 + 10-

10, 0 – 10-10 1 + 10-10]. 

Table 1  Calculation results for Franke's 3D function description using polynomial RBF with L1 norm 

NS NB Volume (m3) RMSE Errmax 

1089 1000 0.26081 6.000⋅10-6 9.596⋅10-3 

1089 1500 0.26072 3.757⋅10-5 5.106⋅10-3 

1089 2000 0.26072 1.694⋅10-6 5.674⋅10-3 

1089 2500 0.26067 1.412⋅10-6 1.127⋅10-2 

It can be seen from Table 1, that calculated volume values using double integration of polynomial 
RBF, with exponent β = 2, are nearly equal to the volume value obtained by direct integration of 
Franke's 3D. Anyway, for values above NB = 3000 additional points, the saturation of description 
occurs and no valid results are obtained, thus showing the limitation regarding the applicability 
of the used method. 
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4.2 EXAMPLE 1: UPPER HEMISPHERE 

In order to further explore the possibilities of 3D PRBF volume calculation, the theoretical upper 
hemisphere surface is described here using polynomial RBF with L1 norm and β = 2, and dense 
boundary description. After that, the belonging volume double integral is calculated and 
compared with the actual volume value. The belonging equation of the upper hemisphere of 
radius R is: 

f(x, y) = (R2 – x2 – y2)1/2 

The volume below an upper hemisphere surface can be determined directly, analytically with V = 
2/3⋅r3⋅π. Therefore, the volume of an upper hemisphere for the radius R = 1 is V = 2/3⋅π = 2.0944 
(m3). 

The volume double integral solution for an upper hemisphere using quadratic polynomial RBF 
interpolation is then explored for various numbers of input points NS and equidistant boundary 
and discontinuity points NB + ND, as shown in Table 2. The calculation boundaries in this example, 
are widened to the area [– 1 – 10-10 1 + 10-10, – 1 – 10-10 1 + 10-10], in order to obtain a solution 
(32). 

Table 2  Calculation results for upper hemisphere with R = 1 using polynomial RBF with L1 norm 

NS NB + ND Volume (m3) RMSE Errmax 

1089 1000 2.0863 2.081⋅10-5 7.839 

1089 2000 2.0973 2.254⋅10-6 0.159 

1089 3000 2.0945 9.489⋅10-8 0.148 

1089 4000 2.0968 3.885⋅10-7 0.109 

1681 5000 2.0926 4.383⋅10-7 0.123 

1681 6000 2.0944 9.479⋅10-5 0.113 

The results of the double integral solution of an upper hemisphere described, using polynomial 
RBF with β = 2, L1 norm and dense boundary description, in Table 2, shows very good agreement 
with an exact volume value for almost all combinations of input points NS and NB + ND points. 
Anyway, it can be seen from the above examples, that it is necessary to find appropriate relation 
between the number of NS and NB + ND points, in order to obtain the required surface description 
regarding the Errmax value. 

 

Fig. 2  Upper hemisphere description using polynomial RBF with L1 norm, β = 2, and NB + ND = 6000 

The description results can be inaccurate and either saturation can occur, or polynomial RBF 
description with β = 2 can have an undesired large local error value Errmax. But, for appropriate 
relation between input points NS and NB + ND boundary and discontinuity points, the results are 
excellent, with values matching exact ones as shown in Figure 2. 



D. Ban, S. Perišić, J. Barle: Directional Wind Spectrum Description using Bivariate L1 Norm RBFs 

110 ENGINEERING MODELLING 36 (2023) 1, 99-114 

4.3 DIRECTIONAL WIND SPECTRUM JOINT DENSITY FUNCTION DESCRIPTION 

It is shown in the previous sections that it is possible to describe various surface types using RBFs 
based on L1 norm and boundary tension, with possibility of geometry features extraction. It is 
assumed also, that this description method will be efficient in wind spectrum description too, 
having all positive values of wind occurrence values shown on applicate axis, with possible 
calculation of joint density function (JDF), as described in (3). 

In order to characterize the loading of wind turbines relevant physical quantities to be measured 
are various load quantities on blade, rotor and tower, operational parameters such as power, 
rotational speed, pitch angles, yaw position, azimuth angle, and meteorological parameters, as 
described in [25] and [26]. Nevertheless, meteorological parameters, such as wind speed and 
direction will be used for wind spectrum description here as in [27], thus enabling direct 
determination of site-specific wind load within an epoch, using discrete directional sectors/bins. 

Usually, the description of actual directional wind spectrum surfaces is not possible using some 
surrogate representation technique. Therefore, theoretical statistical distributions are usually 
used instead in order to describe measured data. But, it is shown here that it is possible to do it 
using RBFs with L1 norm and dense boundary description. The wind spectrum example shown 
here represents wind occurrence count binned with respect to speed and direction, measured 
during two days on Adriatic Sea coast, as shown in the Figure 3. 

If we observe measured directional wind spectrum sequence in the Figure 3, it can be seen that it 
is typical one-peak spectrum with low ridge near 10 (m/s) wind speed, showing continuing wind 
direction change during one epoch. Since its data are binned, initial total data site has non-
favorable equally distributed points that can produce computational problems. Because of that, 
not all data site points should be taken for wind spectrum description using RBFs with L1 norm, 
and it is necessary to have random choice of calculation data site X points. 

  

Fig. 3  Actual directional wind spectrum 

That choice of the points distribution, together with smoothing using equidistant boundary 
points, further enables description of directional wind spectrum using RBFs with L1 norm as 
shown below. Additionally, it is necessary to add randomly distributed near zero count points in 
empty areas in order to enable accurate description. Otherwise, non-wanted oscillations around 
zero count value could occur, and that need to be prevented for useful wind spectrum description. 

The directional wind spectrum description using polynomial RBF with β = 2 and L1 norm is shown 
in the Figure 4. In order to show description properties, displayed range is shortened from whole 
range of direction and wind speed values [0 360; 0 35] to [0 200; 0 25]. The gray dots designate 
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input data site points X, spread along the description range, together with dense boundary points 
set on all four description area edges that look like lines in the Figure 4. 

 

Fig. 4  Directional wind spectrum described using polynomial RBF with β = 2.0 and L1 norm 

It can be seen that the result of the description is satisfying regarding smoothness and accuracy, 
obtaining value of RMSE = 6.345⋅10-5, with description of low ridge near 10 (m/s). Moreover, in 
the case of this test example, it is necessary to obtain all positive values of wind speed count 
number, i.e. the description need not oscillate below zero. 

Negative description values are prevented with additional near zero points, giving total N = 2952 
description points, that are consisting of initial NS = 917 points and additional NB + ND = 2035 
boundary and discontinuity points. This number of points is relatively small considering total 
number of measured input points equal 360x360 points, but is necessary because quasi-
interpolation method is used. In order to have larger number of points from measured data set, 
some of approximation description methods should be used, but that is not in the scope of this 
paper. Anyhow, directional wind spectrum approximation will be the topic of future work of the 
authors of this paper. 

4.4 DIRECTIONAL WIND SPECTRUM JDF CALCULATION 

One of the basic goals of some statistical data analysis is the calculation of the joint probability 
density function (JDF). When the wind spectrum is described using RBFs with L1 norm, and 
surrogate surface function f(ϕ, v) obtained, it is possible to solve the double integral below the 
wind spectrum surface using polynomial or MQ RBFs with integer exponent β = 2, as lowest 
possible polynomial radial basis function exponent when it is defined for L1 norm. In that way, 
direct calculation of joint probability density function fXY is becoming possible in the form shown 
in equation (3). Since polynomial RBF has a slightly simpler form, the volume below described 
directional wind spectrum surface S is calculated using that RBF with integer exponent β = 2. 

For bivariate polynomial RBF with L1 norm (L1RBF) and β = 2 equation (3) can be written as: 
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where ϕ is the wind direction from [0, 360] and v is wind speed [0, 35]. 

The result of direct double integration using solution (32), for spectrum scaled to [0 1, 0 1], is then 
volume below surrogate surface description, that after rescaling equals V = 36147.65. 

The joint probability density function (JDF) is then: 
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In this way, the simplest solution to the JDF determination problem is obtained, using smoothed 
bivariate polynomial RBF with L1 norm (L1RBF) and main function exponent β = 2. The directional 
wind spectrum can be scaled in time in that way, thus giving one more useful property of RBF 
description with L1 norm under boundary tension. Moreover, such a normalized histogram 
represents smoothed probability density function, and it is easy to do its transformations for basic 
coordinates, with keeping basic properties. 

5. CONCLUSION 

The radial basis functions with L1 norm (L1RBF) are novel quasi-smooth surface description 
methods based on the dense distribution of boundary input points, with function exponents β 

from the whole space of positive real numbers. Since polynomial and multiquadric RBFs have L1 
norm as a function argument, belonging data site used for surface description has no limitation 
regarding fill distance between input points, thus enabling geometric features extraction and 
accurate description of object boundaries. 

The RBF descriptions with L1 norm can be obtained in the required polynomial form too, with 
integer exponents of basis functions, β ∈ IN, that are enabling direct, analytical integration below 
some described surface, which has not been possible so far. Moreover, simple quadratic bivariate 
polynomial RBFs and multiquadric RBFs with L1 norm can be obtained, thus having the lowest 
polynomial order for smooth surface description. This solution of smooth surface description, 
obtained with quadratic bivariate polynomial and multiquadric RBFs with L1 norm using the 
dense distribution of boundary input points, is the simplest description method possible that 
enables the analytical solution of double integral, simultaneously. 

Nevertheless, more complex geometries and some quadratic surfaces cannot be described using 
integer exponents with polynomial and multiquadric RBFs. Therefore, their double integral will 
not have a polynomial form, and that solution is to be found separately. 

Besides application for directional wind spectra description, it is assumed that the description 
method using radial basis functions with L1 norm as an argument and dense distribution of 
boundary input points will have application in computational geometry applications in general, 
and that will be investigated in further work of the authors of this paper. directional wind 
spectrum approximation using radial basis functions with L1 norm will be investigated as well, 
and possible advantages of that type of description over interpolation will be examined. 
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