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Abstract—This paper presents numerical model based on finite-

discrete element method for analysis of the structural response of dry 

stone masonry structures under static and dynamic loads. In the 

proposed modelling approach each stone block is modelled as a 

discrete element which is discretized by finite elements. Material 

non-linearity including fracture and fragmentation of discrete 

elements as well as cyclic behavior during dynamic load are 

considered through contact elements which are implemented within a 

finite element mesh. The application of the model was conducted on 

several examples of these structures. The performed analysis shows 

high accuracy of the numerical results in comparison with the 

experimental ones and demonstrates the potential of the finite-

discrete element method for modelling of the response of dry stone 

masonry structures. 
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structures, Static load, Dynamic load. 

I. INTRODUCTION 

large part of cultural heritage all over the world are 

historical structures built as dry stone masonry. However, 

some of them which were originally built with mortar joints 

have experienced a significant loss of mortar during time and 

the behavior of these structures becomes similar to those made 

of dry stone masonry. Most of these structures have been 

damaged due to seismic activity [1]. With the aim of 

increasing their resistance, many of dry stone historical 

structures were further strengthened by steel clamps and bolts. 

In order to evaluate the resistance of these structures and to 

be able to preserve the cultural heritage, it is necessary to 

develop a numerical model which could take into account all 

the effects occurring in dry stone masonry structures including 

the fragmentation of the blocks and non-linear behavior of 

steel clamps and bolts during dynamic loading.  

The most commonly used numerical tool for the analysis of 

masonry structures is the finite element method where the 

material is regarded as a fictitious homogeneous orthotropic 
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continuum [2-4]. The other attractive tools for modelling of 

dry stone masonry structures are based on a discrete element 

method [5-10]. The common idea in different applications of 

the discrete element method to masonry structures is 

idealization of the material as a discontinuum where joints are 

modelled as contact surfaces between different blocks. This 

approach is suitable for modelling different types of non-linear 

behavior including large displacements and rotation with 

complete detachment of blocks.  

In recent times an increasing number of models attempted 

to combine the advantages of finite and discrete element 

methods [11-14]. One of these methods is finite-discrete 

element method (FEM/DEM) [15] which was successfully 

applied in 2D analysis of dry stone masonry structures [16] 

and dry stone masonry structures strengthened with clamps 

and bolts [17]. The model based on this method is capable of 

predicting the collapse mechanism and collapse load of dry 

stone masonry structures under static and seismic loads. Since 

the stone structures are mainly three-dimensional massive, 

modeling of those structures requires a 3D model. Therefore, 

the previously developed 2D finite discrete numerical model 

for stone masonry structures strengthened with clamps and 

bolts is extended for analysis of different failure mechanisms 

occurred in 3D stone masonry structures. The model can be 

useful in making the right decisions during the restoration of 

dry stone masonry structures, especially those classified as 

cultural heritage.  

II. TYPES OF STEEL CLAMPS AND BOLTS 

Historical dry stone masonry structures are commonly 

strengthened with steel clamps embedded on the lateral 

surface of the structure (Fig. 1a) or on the top side of stone 

blocks (Fig. 1b), as well as with steel bolts (Fig. 1c).  

 

 
(a) 

 
(b) 

 
(c) 

Fig. 1 Steel clamps and bolts: (a) steel clamp embedded on the lateral 

face of the structure; (b) steel clamp embedded on the top side of 

stone blocks; (c) steel bolts [17]. 
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Clamps and bolts are embedded into the previously made 

holes in stone blocks that are subsequently backfilled with 

some infill material like plumb. 

Clamps are most commonly used in strengthening of dry 

stone walls and dry stone arches by tension bearing capacity 

while steel bolts are used for connecting the capitals and 

columns or capitals and upper beams (Fig. 1c) and they 

dominantly have shear bearing capacity. 

Due to the presence of many parameters which effect on 

behavior of clamps and bolts in dry stone masonry structures, 

such as the elastic properties of stone and steel, the width and 

depth of the hole into which the clamps and bolts are 

embedded, elastic properties of infill material, geometry of 

clamps and bolts etc., it is very difficult to develop numerical 

model which can take into account all types of failure 

mechanisms and especially the influence of local interaction 

between the bolt or clamp on one side and masonry block on 

another. This paper presents on such attempt where the 

numerical model for steel clamps and bolts are embedded into 

3D finite-discrete model for stone masonry structures. The 

model is an extension of previously developed 2D model [16]. 

Schematic presentations of steel clamps and steel bolts 

modelled in this paper are shown in Fig. 2. 

 

 

Fig. 2 Steel clamps and bolts 

III. DISCRETIZATION OF A DRY STONE STRUCTURE WITH 

STEEL CLAMPS AND BOLTS 

Each stone block is modelled as a discrete element which is 

discretized by constant 2D triangular or 3D tetrahedron finite 

elements. Contact interaction between stone blocks is 

considered through the contact interaction algorithm based on 

the principle of potential contact forces [18, 19] which include 

the Coulomb-type law for friction [20]. Material non-linearity, 

fracture and fragmentation are considered through the contact 

elements which are placed within the finite element mesh of 

each block. 

The steel clamps and steel bolts were modelled with one-

dimensional elements which can be placed in arbitrary 

positions inside the stone finite elements.  

Discretization of dry stone masonry structure with 

embedded steel clamps and bolts is shown in Fig. 3. 

 

 

Fig. 3 Discretization of dry stone structure with steel clamps and 

bolts. 

IV. NON-LINEAR MATERIAL MODEL OF STONE BLOCKS 

The material model of stone blocks is based on crack 

initiation and crack propagation in tension and shear [15]. The 

area under the stress-strain curve consists of two parts (Fig. 4), 

part for modelling of the stone behavior up to the crack 

opening and part which represents strain softening after the 

tensile strength is exceeded. The assumption of the discrete 

crack model is that the cracks coincide with the finite element 

edges. The total number of nodes for each of the finite element 

meshes is doubled and the continuity between elements is 

realized through the penalty method [18]. Separation of the 

edges induces a bonding stress, which is a function of the 

separation size δ. 

 

Fig. 4 Strain softening stress-strain and stress-displacement curves 

 

The area under the stress-displacement curve represents the 

fracture energy Gf =2γ, where γ is the surface energy, i.e. the 

energy needed to extend the crack surface by a unit area. The 

edges of two adjacent elements are held together by normal 

and shear springs before the tensile strength is reached (Fig. 

5). Procedure of the separation of the elements and complete 

relationship for the normal and shear bonding stress are given 

in [15]. 

 

Fig. 5 Normal and shear springs between the finite elements 

 



 

 

V. NUMERICAL MODEL OF STEEL CLAMPS 

A. Steel material model  

The stress-strain relationship for a monotonically increasing 

loading in steel is shown in Fig. 6a. The hysteresis behavior of 

a steel is enforced through Kato’s stress-strain model [21] 

shown in Fig. 6b.  

 

 

Fig. 6 Stress-strain model of steel: (a) monotonic loading; (b) cyclic 

loading (Kato) 

 

From the given strain, stress is calculated by the following 

expressions: 

(1) during unloading (Fig. 6b, curve (1)) 

)( scshsysc Ef  
 (1) 

 

where Es is Young's modulus of steel. 

(2) during negative loading (Fig. 6b, curve (2)) 
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where )(10log)6/( yshsB EE   , )/( Bss EEEa  ; 

(3) during reloading-unloading (Fig. 6b, curve (3)) 
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where σpm is the minimum value of σsc in its loading history; 

(4) during reloading (Fig. 6b, curve (4)) 
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B. Steel clamps  

The steel clamp was defined by its first point P0, the end 

point P1 and the anchorage length lk (Fig. 7). The intersection 

between the blocks edges and line segment 1PP0  gives the 

referents points R0 and R1. The strain of a steel clamp in 

arbitrary time step can be obtained from the coordinates of 

these points in current configuration.  

 

 

Fig. 7 Steel clamp in initial and current configuration. 

 

Coordinates of point P0 in current configuration are 

obtained according to 
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where xc, yc and zc are coordinates of particular node in current 

configuration. Unknown coefficients A, B, C and D can be 

obtained from the following relation 

V

V
D

V

V
C

V

V
B

V

V
A lkji  ;;;  (6) 

 

where V is the volume of the corresponding tetrahedron while 

Vi, Vj, Vk, and Vl are volume of tetrahedrons defined by points 

0jkl, 0ikl, 0ijl and 0ijk respectively. Coordinates of point P1, 

R0 and R1 in current configuration can be obtained in similar 

way.  

Strain of steel clamp is given by  

i
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l
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where lc and li are lengths of a steel clamp in current and 

initial configurations respectively. From obtained strain, it is 

possible to calculate stress σsc of the steel clamp from the steel 

material model. 

The influence of tangential separation p is approximately 

taken into account through a reduction of stress sc   given by 

scsc z   (8) 



 

 

 

where z is the scaling function. The scaling function is equal 

to one when there is no shear separation, while it is equal to 

zero when the shear separation is equal to lk. For shear 

separation 0<p<lk the scaling function depends on the elastic 

properties of stone and a steel clamp, the width of the hole in 

which the steel clamp is embedded, the elastic properties of 

the infill material, the cross section area of the clamp, etc. In 

this numerical model the scaling function is assumed as [22] 
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where variable D=D(p) is determined according to following 

expression 
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The shape of function z for different values of shape 

parameter α is shown Fig. 8. 

 

 

Fig. 8 Reduction factor for different values of shape parameter α 

 

 

 

Fig. 9 Steel clamp: (a) force in steel clamp; (b) equivalent nodal 

forces 

 

In absence of experimental results, the shape parameter α= 

αc for steel clamps can be initially set to zero which leads to a 

linearly decreasing function. If experimental results exist, 

parameter αc can be chosen to best fit experimental data.  

The force in a steel clamp (Fig. 9a) is given by 

scscscsc A  10 ff  (11) 

 

where Asc is the cross-sectional area of clamp. 

Forces f0sc and f1sc acting in points P0 and P1 are distributed 

into the nodes of the parent stone triangular finite element in 

the form of equivalent nodal forces (Fig. 9b). 

C. Behavior of Clamps under Monotonic Loading 

The behavior of clamps under monotonic loading was 

performed on two rigid tetrahedrons connected with a steel 

clamp (Fig. 10). The material characteristics of the steel clamp 

are shown in Table 1. 
TABLE I 

MATERIAL CHARACTERISTICS OF STEEL 

Symbol Quantity  

Es Modulus of elasticity 183 000 MPa 

fy Yield stress 446 MPa 

fu  Ultimate stress 640 MPa 

As Cross section area  0.05 m2 

εsh Strain (end of  yield) 0.005 
εu Ultimate strain 0.100 

εbr Break strain 0.120 

 

The monotonically increasing load was performed in terms 

of constant velocity vx and vy in point B. Velocity vx was equal 

vx =0.2 m/s while velocity vy was varied with values of 0.0 

m/s, 0.2 m/s, 0.3 m/s and 0.4 m/s.  

 

 
 

 

Fig. 10 Stress-strain relation in steel clamps for different cases of 

loading 



 

 

The stress-strain relation in a steel clamp for all cases of 

loading is shown in Fig. 10. It can be seen that, for velocities 

vy different from zero, the reduction in stress occurs due to the 

extracting of the steel clamp from the stone block. Extracting 

of the steel clamp from the block increases with the increase 

of the velocity vy, this leads to the additional reduction of the 

stress in the steel clamp. 

VI. NUMERICAL MODEL OF STEEL BOLTS 

A. Geometry and material model of the bolts 

The steel bolt was defined by its first point P0 and the end 

point P1. The intersection between the blocks edges and line 

segment gives the referents points R0 and R1 (Fig. 11). The 

coordinates of points P0, P1, R0 and R1 in current configuration 

are obtained in a similar way as it was shown in steel clamps 

model. 

 

 

Fig. 11 Steel bolt in initial and current configuration 

 

Tangential separation s induces shear stress τsb in the steel 

bolt and at separation s=spb the shear stress reach its maximum 

fsu (Fig. 12a). With increasing tangential separation s>spb shear 

stress decreases and at separation s>stb it drops to zero and the 

bolt is assumed to be broken. 

Values of fsu, spb, stb and shape of functions, which define 

the relation between shear separation and shear stress, depends 

on elastic properties of stone and a steel bolt, the width of the 

hole in which the steel bolt is embedded, the elastic properties 

of the infill material, the cross section area of the bolt, etc., 

and need to be determined experimentally for each particular 

case. 

 

 

 

Fig. 12 Material model in the steel bolt: (a) shear stresses versus 

shear separation, (b) cyclic behavior 

 

The maximum value of shear stress fsu in steel bolt is 

limited with shear strength of bolt material fsb which can be 

written as  

sbsu ff   (12) 

 

and with shear stress in bolt which cause local crushing of 

stone around the bolt. The shear strength of steel fsb can be 

determined from the tensile strength fu by applying the Von 

Mises yield criterion which leads to 

usb ff 31  (13) 

 

Taking into account that the local compressive strength of 

stone is 3.3 times higher than the global compressive strength 

fc [23] and assuming that in the case of local crushing of stone 

around the bolt the compressive stress in bolt linearly 

decreases to a depth of three diameters of bolt, it can be 

written 
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which leads to 

csu ff 3.6  (15) 

 

where d is diameter of bolt. 

In actual implementation for separation 0≤|s|<spb shear 

stress is given by 
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where value of spb is treated as input parameter. For separation 

spb≤|s|<stb shear stress is assumed as 
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where z is the scaling function defined with (17) where 
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The value of the shape parameter α=αbs needs to be chosen 

to best fit experimental data. In the absence of experimental 

data it can be set to initial value αbs=0. However, collapse of 

the stone masonry structures usually occurs due to the loss of 

the global stability and this parameter has no influence on the 

global structural behaviour. If the collapse of the structure 

caused by the breaking of the bolts, parameter αbs has only 

influence on the shape of the load-displacement curve in 

softening phase, but not to the value of collapse load. 

The complete relationship for the shear stress as the 

function of shear separation can be written as 
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The influence of normal separation o is approximately taken 

into account through a reduction of stress sb   given by 

sbsb z 
 (20) 

 

where z is the scaling function. The scaling function is equal 

to one when there is no normal separation while it is equal to 

zero when the normal separation is equal to l/2 where l is the 

steel bolt length. For normal separation 0<o<l/2 the scaling 

function depends of elastic properties of stone and a steel bolt, 

the width of the hole in which the steel bolt is embedded, the 

elastic properties of the infill material, the cross section area of 

the bolt, etc. In this numerical model the scaling function is 

assumed according to relation (17) where the variable D=D(o) 

is determined according to following expression 

looDD /2)(   (21) 

 

Cyclic behaviour of bolt (Fig. 13) is assumed as 
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where Dmax is the maximum value of D(s) in its loading 

history. 

Shear force in the steel bolt (Fig. 13a) is given by 

sbsbsbsb A  10 ff  (23) 

 

where Asb is cross-section area of the bolt.  

Forces f0sb and f1sb  which are assumed to act in the centre of 

the bolt anchored in the stone block, are distributed into the 

nodes of the parent stone triangular finite element in the form 

of equivalent nodal forces (Fig. 13b). 

 

 

 

Fig. 13 Steel bolt: (a) force in steel bolt; (b) equivalent nodal forces 

B. Behavior of bolts under monotonic loading  

The behaviour of the model of bolts under monotonic 

loading was performed on two rigid tetrahedrons connected 

with steel bolt (Fig. 14). The parameters applied in the 

numerical analysis are shown in Table 2. 

 
TABLE II 

NUMERICAL PARAMETER OF STEEL BOLT 

Symbol Quantity  

D Diameter 50 mm 

ftb Tangential strength 369.5 MPa 

spb Ultimate tangential separation 0.05 mm 
stb Break tangential separation 3.00 mm 

 

The monotonically increasing load was performed in terms 

of constant velocity v=0.2 m/s in point B. Initial normal 

separation o in numerical analysis was varied with values of 

0.0 m, 0.05 m and 0.075 m. 

Shear stress-shear separation relations in steel bolts for 

different initial normal separation are shown in Fig. 14. It can 

be seen that increasing the initial normal separation, the 

reduction in shear stresses also increases. 



 

 

 

 

Fig. 14 Shear stress - shear separation relations in steel bolt for 

different initial normal separation o 

VII.  THE VERIFICATION OF THE MODEL 

An example of a dry stone masonry wall under monotonic 

and cyclic loads with the known experimental and numerical 

results [24, 25] was used for verification of the model under 

monotonic and cyclic load conditions. The geometry and finite 

element mesh are shown in Fig. 15. The numerical analysis 

was performed for vertical pre-compression loads 250 kN 

which corresponds to the pre-compression stress of 1.25 MPa. 

After applying the vertical load, the horizontal load in terms of 

controlled horizontal displacement was applied at the top of 

the steel beam (Fig. 15). 

 
Fig. 15 Dry stone masonry wall: (a) geometry; (b) finite element 

mesh 

The wall consisted of the sawn stone units with the 

dimensions of 200 mm (length) × 150 mm (height) × 200 mm 

(width). Contact elements which present potential cracks in 

stone units are implemented between the finite element mesh. 

Mechanical characteristics of the contact elements are: 

Young’s Modulus E=20200 MPa, tensile strength ft=2.8 MPa, 

compressive strength fc=69.2 MPa, fracture energy I
fG =186 

N/m and sliding friction µ =0,65.   

The cyclic loading history is shown in Fig. 16. 

 
Fig. 16 Loading history 

 

The results of the model were compared with the 

experimental [24] and numerical results obtained by Senthivel 

and Lourenço [25] for a monotonically increasing load (Fig. 

17). The force-displacement curves under monotonic loads 

obtained by the FEM/DEM method assuming potential cracks 

in blocks are very close to the experimental curves and 

numerical results obtained by the analysis where potential 

cracks in the units were not considered [25]. 

 
Fig. 17 Force-displacement diagrams under monotonic loading 

 

The results of the model were also compared with the 

experimental results for cyclic load (Fig. 18). 

 
Fig. 18 Force-displacement diagrams under cyclic loading 

 

 
Fig. 19 Failure patterns of dry masonry wall (numerical and 

experimental) 
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Fig. 18 show that the force-displacement curves under 

cyclic loads obtained numerically is very close to the 

experimental curve. The failure patterns after reaching 

ultimate load obtained from experiment and numerical 

analysis (Fig. 19) is also very similar. 

VIII. CONCLUSION 

This paper presents numerical model for analysis and 

prediction of the collapse of dry stone masonry structures 

strengthened with steel clamps and bolts which is based on the 

finite-discrete element method. The developed model can be 

used for the estimation of the seismic resistance of historical 

dry stone masonry structures reinforced with steel clamps and 

steel bolts, which is very important for the structures classified 

as cultural heritage. The model can also help to make the right 

decisions regarding the restoration of dry stone masonry 

structures which have experienced deterioration over time. 
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